Spaces:
Running
Running
Jordan Legg
commited on
Commit
•
b39e76c
1
Parent(s):
5b879f4
unified the approach to not rely on HF models, just input text.
Browse files
app.py
CHANGED
@@ -1,61 +1,29 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import
|
3 |
-
import json
|
4 |
-
from huggingface_hub import hf_hub_download
|
5 |
|
6 |
-
def
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
with open(model_info_path, "r") as f:
|
11 |
-
model_info = json.load(f)
|
12 |
-
|
13 |
-
# Extract tokenizer class names from the JSON
|
14 |
-
tokenizer_1_class = model_info.get("tokenizer", ["", "Unknown"])[1]
|
15 |
-
tokenizer_2_class = model_info.get("tokenizer_2", ["", "Unknown"])[1]
|
16 |
-
|
17 |
-
return tokenizer_1_class, tokenizer_2_class
|
18 |
-
|
19 |
-
except Exception:
|
20 |
-
# Second attempt: Fall back to original method
|
21 |
-
try:
|
22 |
-
model_info = AutoTokenizer.from_pretrained(model_name, subfolder="tokenizer", _from_auto=True)
|
23 |
-
config = model_info.init_kwargs
|
24 |
-
return config.get('tokenizer_class', 'Unknown'), config.get('tokenizer_2_class', 'Unknown')
|
25 |
-
except Exception:
|
26 |
-
return "Unknown", "Unknown"
|
27 |
-
|
28 |
-
def count_tokens(model_name, text):
|
29 |
-
# Load the tokenizers from the specified model
|
30 |
-
tokenizer_1 = AutoTokenizer.from_pretrained(f"{model_name}", subfolder="tokenizer")
|
31 |
-
tokenizer_2 = AutoTokenizer.from_pretrained(f"{model_name}", subfolder="tokenizer_2")
|
32 |
-
|
33 |
-
# Get tokenizer names
|
34 |
-
tokenizer_1_name, tokenizer_2_name = get_tokenizer_names(model_name)
|
35 |
-
|
36 |
-
# Tokenize the input text
|
37 |
-
tokens_1 = tokenizer_1.tokenize(text)
|
38 |
-
tokens_2 = tokenizer_2.tokenize(text)
|
39 |
|
40 |
-
#
|
41 |
-
|
42 |
-
|
43 |
|
44 |
-
return f"
|
45 |
|
46 |
# Create a Gradio interface
|
47 |
iface = gr.Interface(
|
48 |
fn=count_tokens,
|
49 |
inputs=[
|
50 |
-
gr.Textbox(label="Model Name", placeholder="e.g., black-forest-labs/FLUX.1-dev"),
|
51 |
gr.Textbox(label="Text", placeholder="Enter text here...")
|
52 |
],
|
53 |
outputs=[
|
54 |
-
gr.Textbox(label="Tokenizer
|
55 |
-
gr.Textbox(label="Tokenizer
|
56 |
],
|
57 |
-
title="Token Counter",
|
58 |
-
description="Enter
|
59 |
)
|
60 |
|
61 |
# Launch the app
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import T5TokenizerFast, CLIPTokenizer
|
|
|
|
|
3 |
|
4 |
+
def count_tokens(text):
|
5 |
+
# Load the common tokenizers
|
6 |
+
t5_tokenizer = T5TokenizerFast.from_pretrained("google/t5-v1_1-xxl", legacy=False)
|
7 |
+
clip_tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
# Get token counts directly using the encode method
|
10 |
+
t5_count = len(t5_tokenizer.encode(text))
|
11 |
+
clip_count = len(clip_tokenizer.encode(text))
|
12 |
|
13 |
+
return f"T5: {t5_count} tokens", f"CLIP: {clip_count} tokens"
|
14 |
|
15 |
# Create a Gradio interface
|
16 |
iface = gr.Interface(
|
17 |
fn=count_tokens,
|
18 |
inputs=[
|
|
|
19 |
gr.Textbox(label="Text", placeholder="Enter text here...")
|
20 |
],
|
21 |
outputs=[
|
22 |
+
gr.Textbox(label="T5 Tokenizer"),
|
23 |
+
gr.Textbox(label="CLIP Tokenizer")
|
24 |
],
|
25 |
+
title="Common Diffusion Model Token Counter",
|
26 |
+
description="Enter text to count tokens using T5 and CLIP tokenizers, commonly used in diffusion models."
|
27 |
)
|
28 |
|
29 |
# Launch the app
|