import subprocess import os import gradio as gr import spaces subprocess.run(["git", "clone", "https://github.com/fat-ai/MuseV.git"]) os.chdir("./MuseV") subprocess.run(["pip", "install", "-r", "requirements.txt"]) subprocess.run(["pip", "install", "--no-cache-dir", "-U", "openmim"]) subprocess.run(["mim", "install", "mmengine"]) subprocess.run(["mim", "install", "mmcv>=2.0.1"]) subprocess.run(["mim", "install", "mmdet>=3.1.0"]) subprocess.run(["mim", "install", "mmpose>=1.1.0"]) subprocess.run(["git", "clone", "--recursive", "https://github.com/fat-ai/MuseV.git"]) subprocess.run(["git", "clone", "https://huggingface.co/TMElyralab/MuseV", "./checkpoints"]) os.chdir("..") command = "\"import sys; sys.path.append('./MuseV/MuseV'); sys.path.append('./MuseV/MuseV/MMCM'); sys.path.append('./MuseV/MuseV/diffusers/src'); sys.path.append('./MuseV/MuseV/controlnet_aux/src')\"" subprocess.run(["python","-c",command]) with open ("./MuseV/scripts/inference/text2video.py","r+") as scrip: s = scrip.read() s = s.replace("/checkpoints/embedding/badhandv4.pt", "/MuseV/checkpoints/embedding/badhandv4.pt") s = s.replace("/checkpoints/embedding/ng_deepnegative_v1_75t.pt", "/MuseV/checkpoints/embedding/ng_deepnegative_v1_75t.pt") s = s.replace("/checkpoints/embedding/EasyNegativeV2.safetensors", "/MuseV/checkpoints/embedding/EasyNegativeV2.safetensors") s = s.replace("/checkpoints/embedding/bad_prompt_version2-neg.pt", "/MuseV/checkpoints/embedding/bad_prompt_version2-neg.pt") scrip.write(s) scrip.truncate() scrip.seek(0) subprocess.run(["mv", "./MuseV/scripts/inference/text2video.py", "./MuseV/text2video.py"]) subprocess.run(["mv", "./MuseV/scripts/inference/video2video.py", "./MuseV/video2video.py"]) with open ("./MuseV/configs/model/motion_model.py","r+") as scrip: s = scrip.read() s = s.replace('/content/MuseV/checkpoints', "/home/user/app/MuseV/checkpoints") scrip.write(s) scrip.truncate() scrip.seek(0) with open ("./MuseV/configs/model/ip_adapter.py","r+") as scrip: s = scrip.read() s = s.replace('/content/MuseV/checkpoints', "/home/user/app/MuseV/checkpoints") scrip.write(s) scrip.truncate() scrip.seek(0) with open ("./MuseV/configs/model/T2I_all_model.py","r+") as scrip: s = scrip.read() s = s.replace('/content/MuseV/checkpoints', "/home/user/app/MuseV/checkpoints") scrip.write(s) scrip.truncate() scrip.seek(0) @spaces.GPU def run(duration=180): subprocess.run(["python", "./MuseV/text2video.py", "--sd_model_name", "majicmixRealv6Fp16", "--unet_model_name", "musev_referencenet", "--referencenet_model_name", "musev_referencenet", "--ip_adapter_model_name", "musev_referencenet", "-test_data_path", "./MuseV/configs/tasks/example.yaml", "--output_dir", "./MuseV", "--n_batch", "1", "--target_datas", "Mona_Lisa.", "--vision_clip_extractor_class_name", "ImageClipVisionFeatureExtractor", "--vision_clip_model_path", "./MuseV/checkpoints/IP-Adapter/models/image_encoder", "--motion_speed", "5.0", "--vae_model_path", "./MuseV/checkpoints/vae/sd-vae-ft-mse", "--time_size", "120", "--fps", "24"]) return "./MuseV/Mona_Lisa.mp4" with gr.Blocks() as demo: button = gr.Button() video = gr.Video() button.click(fn=run,outputs=video) demo.launch()