Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update rag_chain/chain.py
Browse files- rag_chain/chain.py +2 -1
rag_chain/chain.py
CHANGED
@@ -115,6 +115,7 @@ def get_rag_chain(
|
|
115 |
practitioners_db_dense_retriever = dense_retriever_client.get_dense_retriever()
|
116 |
|
117 |
# Multiquery retriever using the dense retriever
|
|
|
118 |
practitioners_db_dense_multiquery_retriever = multi_query_retriever_setup(
|
119 |
practitioners_db_dense_retriever
|
120 |
)
|
@@ -132,7 +133,7 @@ def get_rag_chain(
|
|
132 |
# Ensemble retriever for hyprid search (dense retriever seems to work better but the dense retriever is good for acronyms like RMT)
|
133 |
practitioners_ensemble_retriever = EnsembleRetriever(
|
134 |
retrievers=[
|
135 |
-
|
136 |
practitioners_db_sparse_retriever,
|
137 |
],
|
138 |
weights=RETRIEVER_PARAMETERS["weights_ensemble_practitioners_db"],
|
|
|
115 |
practitioners_db_dense_retriever = dense_retriever_client.get_dense_retriever()
|
116 |
|
117 |
# Multiquery retriever using the dense retriever
|
118 |
+
# This retriever can be passed or not to the EnsembleRetriever. It uses GPT-3.5-turbo.
|
119 |
practitioners_db_dense_multiquery_retriever = multi_query_retriever_setup(
|
120 |
practitioners_db_dense_retriever
|
121 |
)
|
|
|
133 |
# Ensemble retriever for hyprid search (dense retriever seems to work better but the dense retriever is good for acronyms like RMT)
|
134 |
practitioners_ensemble_retriever = EnsembleRetriever(
|
135 |
retrievers=[
|
136 |
+
practitioners_db_dense_retriever,
|
137 |
practitioners_db_sparse_retriever,
|
138 |
],
|
139 |
weights=RETRIEVER_PARAMETERS["weights_ensemble_practitioners_db"],
|