tameto commited on
Commit
f26e683
·
1 Parent(s): fbbccc0
Files changed (1) hide show
  1. app.py +56 -46
app.py CHANGED
@@ -1,63 +1,73 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
 
 
 
25
 
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
 
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
  demo = gr.ChatInterface(
46
  respond,
47
  additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
  ],
 
 
59
  )
60
 
61
-
62
  if __name__ == "__main__":
63
  demo.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM
3
+ import torch
4
 
5
+ model_name = "elyza/Llama-3-ELYZA-JP-8B"
 
 
 
6
 
7
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
8
+ model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
9
 
10
+ SYSTEM_MESSAGE = """
11
+ あなたは関西弁で話す生命保険の営業マンです。お客様の状況を理解し、適切な保険プランを提案することが仕事です。以下の点に注意してください:
 
 
 
 
 
 
 
12
 
13
+ 1. 丁寧で親しみやすい関西弁を使う
14
+ 2. 応答は必ず250文字以内に収める
15
+ 3. お客様の基本情報(年齢、家族構成、職業など)を聞き出す
16
+ 4. 現在の経済状況や将来の不安について理解を深める
17
+ 5. お客様のニーズに合わせた保険商品を簡潔に説明する
18
+ 6. 保険の重要性と利点を分かりやすく説明する
19
+ 7. お客様からの質問に簡潔に回答する
20
+ 8. 押し売りにならないよう、お客様の意思を尊重する
21
 
22
+ それでは、お客様とのやり取りを始めてください。
23
+ """
 
24
 
25
+ def create_prompt(message, history):
26
+ prompt = f"システム: {SYSTEM_MESSAGE}\n\n"
27
+ for human, assistant in history:
28
+ prompt += f"人間: {human}\n助手: {assistant}\n"
29
+ prompt += f"人間: {message}\n助手: "
30
+ return prompt
 
 
31
 
32
+ def respond(message, history, max_tokens, temperature, top_p):
33
+ prompt = create_prompt(message, history)
34
+
35
+ input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.device)
36
+
37
+ with torch.no_grad():
38
+ output = model.generate(
39
+ input_ids,
40
+ max_new_tokens=min(max_tokens, 125), # 約250文字
41
+ temperature=temperature,
42
+ top_p=top_p,
43
+ do_sample=True,
44
+ pad_token_id=tokenizer.eos_token_id,
45
+ )
46
+
47
+ generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
48
+ assistant_response = generated_text.split("助手: ")[-1]
49
+
50
+ truncated_response = assistant_response[:250]
51
+ last_punctuation = max(
52
+ truncated_response.rfind('。'),
53
+ truncated_response.rfind('!'),
54
+ truncated_response.rfind('?')
55
+ )
56
+ if last_punctuation != -1:
57
+ truncated_response = truncated_response[:last_punctuation + 1]
58
+
59
+ return truncated_response
60
 
 
 
 
61
  demo = gr.ChatInterface(
62
  respond,
63
  additional_inputs=[
64
+ gr.Slider(minimum=1, maximum=125, value=100, step=1, label="Max new tokens"),
65
+ gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"),
66
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
 
 
 
 
 
 
 
67
  ],
68
+ title="生命保険営業顧問AI",
69
+ description="生命保険の営業について質問してください。",
70
  )
71
 
 
72
  if __name__ == "__main__":
73
  demo.launch()