Spaces:
Sleeping
Sleeping
File size: 7,343 Bytes
3ec8945 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
from PIL import ImageFilter, Image
from easyocr import Reader
import gradio as gr
import numpy as np
import openai
import ast
import os
from openai_api import OpenAI_API
import utils
openai.api_key = os.getenv("API_KEY")
reader = Reader(["tr"])
def get_text(input_img):
img = Image.fromarray(input_img)
detailed = np.asarray(img.filter(ImageFilter.DETAIL))
result = reader.readtext(detailed, detail=0, paragraph=True)
return " ".join(result)
# Submit button
def get_parsed_address(input_img):
address_full_text = get_text(input_img)
return openai_response(address_full_text)
def save_deta_db(input):
eval_result = ast.literal_eval(input)
utils.write_db(eval_result)
return
def update_component():
return gr.update(value="Gönderildi, teşekkürler.", visible=True)
def clear_textbox(value):
return gr.update(value="")
# Open API on change
def text_dict(input):
eval_result = ast.literal_eval(input)
return (
str(eval_result["city"]),
str(eval_result["distinct"]),
str(eval_result["neighbourhood"]),
str(eval_result["street"]),
str(eval_result["address"]),
str(eval_result["tel"]),
str(eval_result["name_surname"]),
str(eval_result["no"]),
)
def openai_response(ocr_input):
prompt = f"""Tabular Data Extraction You are a highly intelligent and accurate tabular data extractor from
plain text input and especially from emergency text that carries address information, your inputs can be text
of arbitrary size, but the output should be in [{{'tabular': {{'entity_type': 'entity'}} }}] JSON format Force it
to only extract keys that are shared as an example in the examples section, if a key value is not found in the
text input, then it should be ignored. Have only city, distinct, neighbourhood,
street, no, tel, name_surname, address Examples:
Input: Deprem sırasında evimizde yer alan adresimiz: İstanbul, Beşiktaş, Yıldız Mahallesi, Cumhuriyet Caddesi No: 35, cep telefonu numaram 5551231256, adim Ahmet Yilmaz
Output: {{'city': 'İstanbul', 'distinct': 'Beşiktaş', 'neighbourhood': 'Yıldız Mahallesi', 'street': 'Cumhuriyet Caddesi', 'no': '35', 'tel': '5551231256', 'name_surname': 'Ahmet Yılmaz', 'address': 'İstanbul, Beşiktaş, Yıldız Mahallesi, Cumhuriyet Caddesi No: 35'}}
Input: 5.29 PMO $ 0 87 DEVREMİZ ÖZGÜR ORÇAN ARKADAŞIMIZA ULAŞAMIYORUZ BEYOĞLU MAH FEVZİ ÇAKMAK CAD. NO.58-TÜRKOĞLUI KAHRAMANMARAŞ 5524357578 AdReSe YaKIN OLANLAR VEYA ULASANLAR LÜTFEN BiLGILENDIRSIN .
Output: {{'city': 'Kahramanmaraş', 'distinct': 'Türkoğlu', 'neighbourhood': 'Beyoğlu Mahallesi', 'street': 'Çakmak Caddesi', 'no': '58', 'tel': '5524357578', 'name_surname': 'Özgür Orçan', 'address': 'Beyoğlu Mahallesi, Çakmak Caddesi, No:58 Türkoğlu/Kahramanmaraş'}}
Input: Ahmet @ozknhmt Ekim 2021 tarihinde katıldı - 2 Takipçi Takip ettiğin kimse takip etmiyor AKEVLER MAH. 432SK RÜYA APT ANT(BEDİİ SABUNCU KARŞISI) ANTAKYA HATAY MERVE BELANLI ses veriyor ancak hiçbiryardım ekibi olmadığı için kurtaramryoruz içeri girip, lütfen acil yardım_ İsim: Merve Belanlı tel 542 757 5484 Ö0 12.07
Output: {{'city': 'Hatay', 'distinct': 'Antakya', 'neighbourhood': 'Akevler Mahallesi', 'street': '432 Sokak', 'no': '', 'tel': '5427575484', 'name_surname': 'Merve Belanlı', 'address': 'Akevler Mahallesi, 432 Sokak, Rüya Apt. Antakya/Hatay'}}
Input: 14:04 Sümerler Cemil Şükrü Çolokoğlu ilköğretim okulu karşısı 3 9öçük altında yardım bekyouk Lütfen herkes paylogsın
Output: {{'city': '', 'distinct': '', 'neighbourhood': 'Sümerler Mahallesi', 'street': 'Cemil Şükrü Çolokoğlu İlköğretim Okulu Karşısı', 'no': '', 'tel': '', 'name_surname': '', 'address': 'Sümerler Mahallesi, Cemil Şükrü Çolokoğlu İlköğretim Okulu Karşısı'}}
Input: {ocr_input}
Output:
"""
openai_client = OpenAI_API()
response = openai_client.single_request(prompt)
resp = response["choices"][0]["text"]
print(resp)
resp = eval(resp.replace("'{", "{").replace("}'", "}"))
resp["input"] = ocr_input
dict_keys = [
"city",
"distinct",
"neighbourhood",
"street",
"no",
"tel",
"name_surname",
"address",
"input",
]
for key in dict_keys:
if key not in resp.keys():
resp[key] = ""
return resp
# User Interface
with gr.Blocks() as demo:
gr.Markdown(
"""
# Enkaz Bildirme Uygulaması
"""
)
gr.Markdown(
"Bu uygulamada ekran görüntüsü sürükleyip bırakarak AFAD'a enkaz bildirimi yapabilirsiniz. Mesajı metin olarak da girebilirsiniz, tam adresi ayrıştırıp döndürür. API olarak kullanmak isterseniz sayfanın en altında use via api'ya tıklayın."
)
with gr.Row():
with gr.Column():
img_area = gr.Image(label="Ekran Görüntüsü yükleyin 👇")
img_area_button = gr.Button(value="Görüntüyü İşle", label="Submit")
with gr.Column():
text_area = gr.Textbox(label="Metin yükleyin 👇 ", lines=8)
text_area_button = gr.Button(value="Metni Yükle", label="Submit")
open_api_text = gr.Textbox(label="Tam Adres")
with gr.Column():
with gr.Row():
city = gr.Textbox(label="İl", interactive=True, show_progress=False)
distinct = gr.Textbox(label="İlçe", interactive=True, show_progress=False)
with gr.Row():
neighbourhood = gr.Textbox(
label="Mahalle", interactive=True, show_progress=False
)
street = gr.Textbox(
label="Sokak/Cadde/Bulvar", interactive=True, show_progress=False
)
with gr.Row():
tel = gr.Textbox(label="Telefon", interactive=True, show_progress=False)
with gr.Row():
name_surname = gr.Textbox(
label="İsim Soyisim", interactive=True, show_progress=False
)
address = gr.Textbox(label="Adres", interactive=True, show_progress=False)
with gr.Row():
no = gr.Textbox(label="Kapı No", interactive=True, show_progress=False)
img_area_button.click(
get_parsed_address,
inputs=img_area,
outputs=open_api_text,
api_name="upload-image",
)
text_area_button.click(
openai_response, text_area, open_api_text, api_name="upload-text"
)
open_api_text.change(
text_dict,
open_api_text,
[city, distinct, neighbourhood, street, address, tel, name_surname, no],
)
submit_button = gr.Button(value="Veriyi Birimlere Yolla")
submit_button.click(save_deta_db, open_api_text)
done_text = gr.Textbox(label="Done", value="Not Done", visible=False)
submit_button.click(update_component, outputs=done_text)
for txt in [city, distinct, neighbourhood, street, address, tel, name_surname, no]:
submit_button.click(fn=clear_textbox, inputs=txt, outputs=txt)
if __name__ == "__main__":
demo.launch()
|