import gradio as gr import torch from PIL import ImageDraw from transformers import AutoModelForObjectDetection, AutoImageProcessor processor = AutoImageProcessor.from_pretrained("tanukinet/hanko") model = AutoModelForObjectDetection.from_pretrained("tanukinet/hanko", ignore_mismatched_sizes=True,) def object_detection(image): image = image.copy() inputs = processor(images=image, return_tensors="pt") outputs = model(**inputs) target_sizes = torch.tensor([image.size[::-1]]) results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.8)[0] for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): box = [round(i, 2) for i in box.tolist()] print( f"Detected {model.config.id2label[label.item()]} with confidence " f"{round(score.item(), 3)} at location {box}" ) draw = ImageDraw.Draw(image) for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): box = [round(i, 2) for i in box.tolist()] x, y, x2, y2 = tuple(box) draw.rectangle((x, y, x2, y2), outline="red", width=1) draw.text((x, y), model.config.id2label[label.item()], fill="white") return image demo = gr.Interface( object_detection, gr.Image(type="pil"), "image", examples=[ "sample1.png", "sample2.png", ], ) if __name__ == "__main__": demo.launch()