Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,7 +5,6 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
5 |
import spaces
|
6 |
|
7 |
tokenizer = AutoTokenizer.from_pretrained("Rorical/0-roleplay", trust_remote_code=True)
|
8 |
-
tokenizer.chat_template = "{% for message in messages %}{{'<|im_start|>' + ((message['role'] + '\n') if message['role'] != '' else '') + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}"
|
9 |
tokenizer.add_special_tokens({"bos_token": tokenizer.eos_token})
|
10 |
tokenizer.bos_token_id = tokenizer.eos_token_id
|
11 |
|
@@ -14,19 +13,22 @@ tokenizer.bos_token_id = tokenizer.eos_token_id
|
|
14 |
def respond(
|
15 |
message,
|
16 |
history: list[tuple[str, str]],
|
|
|
|
|
17 |
system_message,
|
18 |
max_tokens,
|
19 |
temperature,
|
20 |
top_p,
|
21 |
):
|
22 |
model = AutoModelForCausalLM.from_pretrained("Rorical/0-roleplay", return_dict=True, trust_remote_code=True)
|
23 |
-
|
|
|
24 |
# Construct the messages for the chat
|
25 |
messages = [{"role": "", "content": system_message}]
|
26 |
for user_message, bot_response in history:
|
27 |
-
messages.append({"role":
|
28 |
-
messages.append({"role":
|
29 |
-
messages.append({"role":
|
30 |
|
31 |
# Tokenize and prepare inputs
|
32 |
inputs = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
|
@@ -75,7 +77,8 @@ prompt = """# ่ง่ฒๆฎๆผ
|
|
75 |
demo = gr.ChatInterface(
|
76 |
respond,
|
77 |
additional_inputs=[
|
78 |
-
gr.Textbox
|
|
|
79 |
gr.Textbox(value=prompt, label="System message", lines=5),
|
80 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
81 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
|
|
5 |
import spaces
|
6 |
|
7 |
tokenizer = AutoTokenizer.from_pretrained("Rorical/0-roleplay", trust_remote_code=True)
|
|
|
8 |
tokenizer.add_special_tokens({"bos_token": tokenizer.eos_token})
|
9 |
tokenizer.bos_token_id = tokenizer.eos_token_id
|
10 |
|
|
|
13 |
def respond(
|
14 |
message,
|
15 |
history: list[tuple[str, str]],
|
16 |
+
user_name,
|
17 |
+
bot_name,
|
18 |
system_message,
|
19 |
max_tokens,
|
20 |
temperature,
|
21 |
top_p,
|
22 |
):
|
23 |
model = AutoModelForCausalLM.from_pretrained("Rorical/0-roleplay", return_dict=True, trust_remote_code=True)
|
24 |
+
tokenizer.chat_template = "{% for message in messages %}{{'<|im_start|>' + ((message['role'] + '\n') if message['role'] != '' else '') + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>" + bot_name + "\n' }}{% endif %}" # Be careful that this model used custom chat template.
|
25 |
+
|
26 |
# Construct the messages for the chat
|
27 |
messages = [{"role": "", "content": system_message}]
|
28 |
for user_message, bot_response in history:
|
29 |
+
messages.append({"role": user_name, "content": user_message})
|
30 |
+
messages.append({"role": bot_name, "content": bot_response})
|
31 |
+
messages.append({"role": user_name, "content": message})
|
32 |
|
33 |
# Tokenize and prepare inputs
|
34 |
inputs = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
|
|
|
77 |
demo = gr.ChatInterface(
|
78 |
respond,
|
79 |
additional_inputs=[
|
80 |
+
gr.Textbox(value="่ๅธ", label="User name", lines=1),
|
81 |
+
gr.Textbox(value="ๆ้", label="Bot name", lines=1),
|
82 |
gr.Textbox(value=prompt, label="System message", lines=5),
|
83 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
84 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|