File size: 13,555 Bytes
6e09c19
 
 
 
 
 
 
 
 
 
 
4eb36d2
 
6e09c19
6134bec
6e09c19
 
 
4eb36d2
 
 
6e09c19
 
 
4eb36d2
6e09c19
 
51aea63
6e09c19
4eb36d2
 
6e09c19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
621587b
6e09c19
621587b
 
6e09c19
 
621587b
6e09c19
 
 
 
 
 
 
 
4eb36d2
6e09c19
 
 
 
 
 
621587b
 
6e09c19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4eb36d2
6e09c19
4eb36d2
6e09c19
 
 
4eb36d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e09c19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4eb36d2
6e09c19
4eb36d2
6e09c19
 
 
4eb36d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e09c19
 
 
 
 
 
 
 
 
4eb36d2
6e09c19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60a97c6
6e09c19
 
 
 
3c5fbe6
6e09c19
 
 
 
 
 
 
 
 
 
 
4eb36d2
 
6e09c19
 
4eb36d2
6e09c19
4eb36d2
6e09c19
4eb36d2
 
6e09c19
 
 
 
 
 
 
 
4eb36d2
6e09c19
4eb36d2
6e09c19
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
import io
import os
import math
from queue import Queue
from threading import Thread
from typing import Optional

import numpy as np
import spaces
import gradio as gr
import torch
import nltk


from parler_tts import ParlerTTSForConditionalGeneration
from pydub import AudioSegment
from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed

nltk.download('punkt_tab')

device = "cuda:0" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
torch_dtype = torch.bfloat16 if device != "cpu" else torch.float32

repo_id = "ai4bharat/indic-parler-tts-pretrained"
finetuned_repo_id = "ai4bharat/indic-parler-tts"

model = ParlerTTSForConditionalGeneration.from_pretrained(
    repo_id, attn_implementation="eager", torch_dtype=torch_dtype,
).to(device)
finetuned_model = ParlerTTSForConditionalGeneration.from_pretrained(
    finetuned_repo_id, attn_implementation="eager", torch_dtype=torch_dtype,
).to(device)

tokenizer = AutoTokenizer.from_pretrained(repo_id)
description_tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-large")
feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id)

SAMPLE_RATE = feature_extractor.sampling_rate
SEED = 42

default_text = "Please surprise me and speak in whatever voice you enjoy."
examples = [
    [
        "मुले बागेत खेळत आहेत आणि पक्षी किलबिलाट करत आहेत.",
        "Sunita speaks slowly in a calm, moderate-pitched voice, delivering the news with a neutral tone. The recording is very high quality with no background noise.",
        3.0
    ],

    [
        "আমাদের ছোটো নদী চলে বাঁকে বাঁকে বৈশাখ মাসে তার হাঁটু জল থাকে।।",
        "Arjun speaks at a moderate pace and pitch, with a clear, neutral tone and no emotional emphasis. The recording is very high quality with no background noise.",
        3.0
    ],
    
    [
        "குழந்தைகள் தோட்டத்தில் விளையாடுகிறார்கள், பறவைகள் கிண்டல் செய்கின்றன.",
        "Jaya speaks with a slightly low-pitched, quite monotone voice at a slightly faster-than-average pace in a confined space with very clear audio.",
        3.0
    ]
]


finetuned_examples = [
    [
        "मुले बागेत खेळत आहेत आणि पक्षी किलबिलाट करत आहेत.",
        "Sunita speaks slowly in a calm, moderate-pitched voice, delivering the news with a neutral tone. The recording is very high quality with no background noise.",
        3.0
    ],
    [
        "আমাদের ছোটো নদী চলে বাঁকে বাঁকে বৈশাখ মাসে তার হাঁটু জল থাকে।",
        "Arjun speaks at a moderate pace and pitch, with a clear, neutral tone and no emotional emphasis. The recording is very high quality with no background noise.",
        3.0
    ],
    [
        "குழந்தைகள் தோட்டத்தில் விளையாடுகிறார்கள், பறவைகள் கிண்டல் செய்கின்றன.",
        "Jaya speaks with a slightly low-pitched, quite monotone voice at a slightly faster-than-average pace in a confined space with very clear audio.",
        3.0
    ]
]


def numpy_to_mp3(audio_array, sampling_rate):
    # Normalize audio_array if it's floating-point
    if np.issubdtype(audio_array.dtype, np.floating):
        max_val = np.max(np.abs(audio_array))
        audio_array = (audio_array / max_val) * 32767  # Normalize to 16-bit range
        audio_array = audio_array.astype(np.int16)

    # Create an audio segment from the numpy array
    audio_segment = AudioSegment(
        audio_array.tobytes(),
        frame_rate=sampling_rate,
        sample_width=audio_array.dtype.itemsize,
        channels=1
    )

    # Export the audio segment to MP3 bytes - use a high bitrate to maximise quality
    mp3_io = io.BytesIO()
    audio_segment.export(mp3_io, format="mp3", bitrate="320k")

    # Get the MP3 bytes
    mp3_bytes = mp3_io.getvalue()
    mp3_io.close()

    return mp3_bytes

sampling_rate = model.audio_encoder.config.sampling_rate
frame_rate = model.audio_encoder.config.frame_rate

@spaces.GPU
def generate_base(text, description,):
    # Initialize variables
    chunk_size = 25  # Process max 25 words or a sentence at a time
    
    # Tokenize the full text and description
    inputs = description_tokenizer(description, return_tensors="pt").to(device)

    sentences_text = nltk.sent_tokenize(text) # this gives us a list of sentences
    curr_sentence = ""
    chunks = []
    for sentence in sentences_text:
        candidate = " ".join([curr_sentence, sentence])
        if len(candidate.split()) >= chunk_size:
            chunks.append(curr_sentence)
            curr_sentence = sentence
        else:
            curr_sentence = candidate

    if curr_sentence != "":
        chunks.append(curr_sentence)
        
    print(chunks)

    all_audio = []
    
    # Process each chunk
    for chunk in chunks:
        # Tokenize the chunk
        prompt = tokenizer(chunk, return_tensors="pt").to(device)
        
        # Generate audio for the chunk
        generation = model.generate(
            input_ids=inputs.input_ids,
            attention_mask=inputs.attention_mask,
            prompt_input_ids=prompt.input_ids,
            prompt_attention_mask=prompt.attention_mask,
            do_sample=True,
            return_dict_in_generate=True
        )
            
        # Extract audio from generation
        if hasattr(generation, 'sequences') and hasattr(generation, 'audios_length'):
            audio = generation.sequences[0, :generation.audios_length[0]]
            audio_np = audio.to(torch.float32).cpu().numpy().squeeze()
            if len(audio_np.shape) > 1:
                audio_np = audio_np.flatten()
            all_audio.append(audio_np)
    
    # Combine all audio chunks
    combined_audio = np.concatenate(all_audio)
    
    # Convert to expected format and yield
    print(f"Sample of length: {round(combined_audio.shape[0] / sampling_rate, 2)} seconds")
    yield numpy_to_mp3(combined_audio, sampling_rate=sampling_rate)


@spaces.GPU
def generate_finetuned(text, description):
    # Initialize variables
    chunk_size = 25  # Process max 25 words or a sentence at a time
    
    # Tokenize the full text and description
    inputs = description_tokenizer(description, return_tensors="pt").to(device)

    sentences_text = nltk.sent_tokenize(text) # this gives us a list of sentences
    curr_sentence = ""
    chunks = []
    for sentence in sentences_text:
        candidate = " ".join([curr_sentence, sentence])
        if len(candidate.split()) >= chunk_size:
            chunks.append(curr_sentence)
            curr_sentence = sentence
        else:
            curr_sentence = candidate

    if curr_sentence != "":
        chunks.append(curr_sentence)
        
    print(chunks)
    
    all_audio = []
    
    # Process each chunk
    for chunk in chunks:
        # Tokenize the chunk
        prompt = tokenizer(chunk, return_tensors="pt").to(device)

        # Generate audio for the chunk
        generation = finetuned_model.generate(
            input_ids=inputs.input_ids,
            attention_mask=inputs.attention_mask,
            prompt_input_ids=prompt.input_ids,
            prompt_attention_mask=prompt.attention_mask,
            do_sample=True,
            return_dict_in_generate=True
        )

        # Extract audio from generation
        if hasattr(generation, 'sequences') and hasattr(generation, 'audios_length'):
            audio = generation.sequences[0, :generation.audios_length[0]]
            audio_np = audio.to(torch.float32).cpu().numpy().squeeze()
            if len(audio_np.shape) > 1:
                audio_np = audio_np.flatten()
            all_audio.append(audio_np)
    
    # Combine all audio chunks
    combined_audio = np.concatenate(all_audio)
    
    # Convert to expected format and yield
    print(f"Sample of length: {round(combined_audio.shape[0] / sampling_rate, 2)} seconds")
    yield numpy_to_mp3(combined_audio, sampling_rate=sampling_rate)


css = """
        #share-btn-container {
            display: flex;
            padding-left: 0.5rem !important;
            padding-right: 0.5rem !important;
            background-color: #000000;
            justify-content: center;
            align-items: center;
            border-radius: 9999px !important; 
            width: 13rem;
            margin-top: 10px;
            margin-left: auto;
            flex: unset !important;
        }
        #share-btn {
            all: initial;
            color: #ffffff;
            font-weight: 600;
            cursor: pointer;
            font-family: 'IBM Plex Sans', sans-serif;
            margin-left: 0.5rem !important;
            padding-top: 0.25rem !important;
            padding-bottom: 0.25rem !important;
            right:0;
        }
        #share-btn * {
            all: unset !important;
        }
        #share-btn-container div:nth-child(-n+2){
            width: auto !important;
            min-height: 0px !important;
        }
        #share-btn-container .wrap {
            display: none !important;
        }
"""
with gr.Blocks(css=css) as block:
    gr.HTML(
        """
            <div style="text-align: center; max-width: 700px; margin: 0 auto;">
              <div
                style="
                  display: inline-flex; align-items: center; gap: 0.8rem; font-size: 1.75rem;
                "
              >
                <h1 style="font-weight: 900; margin-bottom: 7px; line-height: normal;">
                  Parler-TTS 🗣️
                </h1>
              </div>
            </div>
        """
    )
    gr.HTML(
        f"""
        <p><a href="https://github.com/huggingface/Parler-TTS">ParlerTTS</a> is a training and inference library for high-quality text-to-speech (TTS) models. This demonstration highlights the flexibility of the IndicParlerTTS model, which generates natural, expressive speech for over 22 Indian languages, using a simple text prompt to control features like speaker style, tone, pitch, pace, and more.</p>

        <p>Tips for effective usage:
        <ul>
            <li>Use detailed captions to describe the speaker and desired characteristics (e.g., "Aditi speaks in a slightly expressive tone, with clear audio quality and a moderate pace.").</li>
            <li>For best results, reference specific named speakers provided in the model card on the <a href="https://huggingface.co/ai4bharat/indic-parler-tts#%F0%9F%8E%AF-using-a-specific-speaker">model page</a>.</li>
            <li>Include terms like <b>"very clear audio"</b> or <b>"slightly noisy audio"</b> to control the audio quality and background ambiance.</li>
            <li>Punctuation can be used to shape prosody (e.g., commas add pauses for natural phrasing).</li>
            <li>If unsure about what caption to use, you can start with: <b>"The speaker speaks naturally. The recording is very high quality with no background noise."</b></li>
        </ul>
        </p>
        """
    )

    with gr.Tab("Finetuned"):
        with gr.Row():
            with gr.Column():
                input_text = gr.Textbox(label="Input Text", lines=2, value=finetuned_examples[0][0], elem_id="input_text")
                description = gr.Textbox(label="Description", lines=2, value=finetuned_examples[0][1], elem_id="input_description")
                run_button = gr.Button("Generate Audio", variant="primary")
            with gr.Column():
                audio_out = gr.Audio(label="Parler-TTS generation", format="mp3", elem_id="audio_out", autoplay=True)

        inputs = [input_text, description]
        outputs = [audio_out]
        gr.Examples(examples=finetuned_examples, fn=generate_finetuned, inputs=inputs, outputs=outputs, cache_examples=False)
        run_button.click(fn=generate_finetuned, inputs=inputs, outputs=outputs, queue=True)

    with gr.Tab("Pretrained"):
        with gr.Row():
            with gr.Column():
                input_text = gr.Textbox(label="Input Text", lines=2, value=default_text, elem_id="input_text")
                description = gr.Textbox(label="Description", lines=2, value="", elem_id="input_description")
                run_button = gr.Button("Generate Audio", variant="primary")
            with gr.Column():
                audio_out = gr.Audio(label="Parler-TTS generation", format="mp3", elem_id="audio_out", autoplay=True)

        inputs = [input_text, description]
        outputs = [audio_out]
        gr.Examples(examples=examples, fn=generate_base, inputs=inputs, outputs=outputs, cache_examples=False)
        run_button.click(fn=generate_base, inputs=inputs, outputs=outputs, queue=True)


    gr.HTML(
        """
        If you'd like to learn more about how the model was trained or explore fine-tuning it yourself, visit the <a href="https://github.com/huggingface/parler-tts">Parler-TTS</a> repository on GitHub. The Parler-TTS codebase and associated checkpoints are licensed under the <a href="https://github.com/huggingface/parler-tts/blob/main/LICENSE">Apache 2.0 license</a>.</p>
                """
    )

block.queue()
block.launch(share=True)