Spaces:
Running
Running
File size: 13,936 Bytes
6e09c19 4eb36d2 6e09c19 6134bec 6e09c19 4eb36d2 6e09c19 4eb36d2 6e09c19 51aea63 6e09c19 4eb36d2 6e09c19 621587b 6e09c19 71d954f 6e09c19 4eb36d2 6e09c19 621587b 6e09c19 71d954f 6e09c19 4eb36d2 6e09c19 4eb36d2 6e09c19 4eb36d2 6e09c19 4eb36d2 6e09c19 4eb36d2 6e09c19 4eb36d2 6e09c19 4eb36d2 6e09c19 71d954f 6e09c19 8a75cff 6e09c19 71d954f 3c5fbe6 6e09c19 4eb36d2 6e09c19 4eb36d2 6e09c19 4eb36d2 6e09c19 4eb36d2 6e09c19 4eb36d2 6e09c19 4eb36d2 6e09c19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
import io
import os
import math
from queue import Queue
from threading import Thread
from typing import Optional
import numpy as np
import spaces
import gradio as gr
import torch
import nltk
from parler_tts import ParlerTTSForConditionalGeneration
from pydub import AudioSegment
from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed
nltk.download('punkt_tab')
device = "cuda:0" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
torch_dtype = torch.bfloat16 if device != "cpu" else torch.float32
repo_id = "ai4bharat/indic-parler-tts-pretrained"
finetuned_repo_id = "ai4bharat/indic-parler-tts"
model = ParlerTTSForConditionalGeneration.from_pretrained(
repo_id, attn_implementation="eager", torch_dtype=torch_dtype,
).to(device)
finetuned_model = ParlerTTSForConditionalGeneration.from_pretrained(
finetuned_repo_id, attn_implementation="eager", torch_dtype=torch_dtype,
).to(device)
tokenizer = AutoTokenizer.from_pretrained(repo_id)
description_tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-large")
feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id)
SAMPLE_RATE = feature_extractor.sampling_rate
SEED = 42
default_text = "Please surprise me and speak in whatever voice you enjoy."
examples = [
[
"আমাদের ছোটো নদী চলে বাঁকে বাঁকে বৈশাখ মাসে তার হাঁটু জল থাকে।।",
"Arjun speaks at a moderate pace and pitch, with a clear, neutral tone and no emotional emphasis. The recording is very high quality with no background noise.",
3.0
],
[
"আমার সোনার বাংলা আমি তোমায় ভালোবাসি।",
"Promi speaks at a moderate pace and pitch, with a clear, neutral tone and no emotional emphasis. The recording is very high quality with no background noise.",
3.0
],
[
"আমার চ্যানেলটি সাবস্ক্রাইব করুণ ।",
"Samanta speaks at a moderate pace and pitch, with a clear, neutral tone and no emotional emphasis. The recording is very high quality with no background noise.",
3.0
],
[
"জয় বাংলা।",
"Rafiq speaks at a moderate pace and pitch, with a clear, neutral tone and no emotional emphasis. The recording is very high quality with no background noise.",
3.0
]
]
finetuned_examples = [
[
"আমাদের ছোটো নদী চলে বাঁকে বাঁকে বৈশাখ মাসে তার হাঁটু জল থাকে।",
"Arjun speaks at a moderate pace and pitch, with a clear, neutral tone and no emotional emphasis. The recording is very high quality with no background noise.",
3.0
],
[
"আমার সোনার বাংলা আমি তোমায় ভালোবাসি।",
"Promi speaks at a moderate pace and pitch, with a clear, neutral tone and no emotional emphasis. The recording is very high quality with no background noise.",
3.0
],
[
"আমার চ্যানেলটি সাবস্ক্রাইব করুণ ।",
"Samanta speaks at a moderate pace and pitch, with a clear, neutral tone and no emotional emphasis. The recording is very high quality with no background noise.",
3.0
],
[
"জয় বাংলা।",
"Rafiq speaks at a moderate pace and pitch, with a clear, neutral tone and no emotional emphasis. The recording is very high quality with no background noise.",
3.0
]
]
def numpy_to_mp3(audio_array, sampling_rate):
# Normalize audio_array if it's floating-point
if np.issubdtype(audio_array.dtype, np.floating):
max_val = np.max(np.abs(audio_array))
audio_array = (audio_array / max_val) * 32767 # Normalize to 16-bit range
audio_array = audio_array.astype(np.int16)
# Create an audio segment from the numpy array
audio_segment = AudioSegment(
audio_array.tobytes(),
frame_rate=sampling_rate,
sample_width=audio_array.dtype.itemsize,
channels=1
)
# Export the audio segment to MP3 bytes - use a high bitrate to maximise quality
mp3_io = io.BytesIO()
audio_segment.export(mp3_io, format="mp3", bitrate="320k")
# Get the MP3 bytes
mp3_bytes = mp3_io.getvalue()
mp3_io.close()
return mp3_bytes
sampling_rate = model.audio_encoder.config.sampling_rate
frame_rate = model.audio_encoder.config.frame_rate
@spaces.GPU
def generate_base(text, description,):
# Initialize variables
chunk_size = 25 # Process max 25 words or a sentence at a time
# Tokenize the full text and description
inputs = description_tokenizer(description, return_tensors="pt").to(device)
sentences_text = nltk.sent_tokenize(text) # this gives us a list of sentences
curr_sentence = ""
chunks = []
for sentence in sentences_text:
candidate = " ".join([curr_sentence, sentence])
if len(candidate.split()) >= chunk_size:
chunks.append(curr_sentence)
curr_sentence = sentence
else:
curr_sentence = candidate
if curr_sentence != "":
chunks.append(curr_sentence)
print(chunks)
all_audio = []
# Process each chunk
for chunk in chunks:
# Tokenize the chunk
prompt = tokenizer(chunk, return_tensors="pt").to(device)
# Generate audio for the chunk
generation = model.generate(
input_ids=inputs.input_ids,
attention_mask=inputs.attention_mask,
prompt_input_ids=prompt.input_ids,
prompt_attention_mask=prompt.attention_mask,
do_sample=True,
return_dict_in_generate=True
)
# Extract audio from generation
if hasattr(generation, 'sequences') and hasattr(generation, 'audios_length'):
audio = generation.sequences[0, :generation.audios_length[0]]
audio_np = audio.to(torch.float32).cpu().numpy().squeeze()
if len(audio_np.shape) > 1:
audio_np = audio_np.flatten()
all_audio.append(audio_np)
# Combine all audio chunks
combined_audio = np.concatenate(all_audio)
# Convert to expected format and yield
print(f"Sample of length: {round(combined_audio.shape[0] / sampling_rate, 2)} seconds")
yield numpy_to_mp3(combined_audio, sampling_rate=sampling_rate)
@spaces.GPU
def generate_finetuned(text, description):
# Initialize variables
chunk_size = 25 # Process max 25 words or a sentence at a time
# Tokenize the full text and description
inputs = description_tokenizer(description, return_tensors="pt").to(device)
sentences_text = nltk.sent_tokenize(text) # this gives us a list of sentences
curr_sentence = ""
chunks = []
for sentence in sentences_text:
candidate = " ".join([curr_sentence, sentence])
if len(candidate.split()) >= chunk_size:
chunks.append(curr_sentence)
curr_sentence = sentence
else:
curr_sentence = candidate
if curr_sentence != "":
chunks.append(curr_sentence)
print(chunks)
all_audio = []
# Process each chunk
for chunk in chunks:
# Tokenize the chunk
prompt = tokenizer(chunk, return_tensors="pt").to(device)
# Generate audio for the chunk
generation = finetuned_model.generate(
input_ids=inputs.input_ids,
attention_mask=inputs.attention_mask,
prompt_input_ids=prompt.input_ids,
prompt_attention_mask=prompt.attention_mask,
do_sample=True,
return_dict_in_generate=True
)
# Extract audio from generation
if hasattr(generation, 'sequences') and hasattr(generation, 'audios_length'):
audio = generation.sequences[0, :generation.audios_length[0]]
audio_np = audio.to(torch.float32).cpu().numpy().squeeze()
if len(audio_np.shape) > 1:
audio_np = audio_np.flatten()
all_audio.append(audio_np)
# Combine all audio chunks
combined_audio = np.concatenate(all_audio)
# Convert to expected format and yield
print(f"Sample of length: {round(combined_audio.shape[0] / sampling_rate, 2)} seconds")
yield numpy_to_mp3(combined_audio, sampling_rate=sampling_rate)
css = """
#share-btn-container {
display: flex;
padding-left: 0.5rem !important;
padding-right: 0.5rem !important;
background-color: #ffffff;
justify-content: center;
align-items: center;
border-radius: 9999px !important;
width: 13rem;
margin-top: 10px;
margin-left: auto;
flex: unset !important;
}
#share-btn {
all: initial;
color: #ffffff;
font-weight: 600;
cursor: pointer;
font-family: 'IBM Plex Sans', sans-serif;
margin-left: 0.5rem !important;
padding-top: 0.25rem !important;
padding-bottom: 0.25rem !important;
right:0;
}
#share-btn * {
all: unset !important;
}
#share-btn-container div:nth-child(-n+2){
width: auto !important;
min-height: 0px !important;
}
#share-btn-container .wrap {
display: none !important;
}
"""
with gr.Blocks(css=css) as block:
gr.HTML(
"""
<div style="text-align: center; max-width: 700px; margin: 0 auto;">
<div
style="
display: inline-flex; align-items: center; gap: 0.8rem; font-size: 1.75rem;
"
>
<h1 style="font-weight: 900; margin-bottom: 7px; line-height: normal;">
Parler-TTS 🗣️
</h1>
</div>
</div>
"""
)
gr.HTML(
f"""
<p><a href="https://github.com/huggingface/Parler-TTS">ParlerTTS</a> is a training and inference library for high-quality text-to-speech (TTS) models.This Hugging Face Space features a modified interface for generating Bengali Text-to-Speech (TTS). The primary model utilized is sourced from IndicParlerTTS, which is designed to enhance multilingual speech synthesis capabilities, which generates natural, expressive speech for over 22 Indian languages, using a simple text prompt to control features like speaker style, tone, pitch, pace, and more.</p>
<p>Tips for effective usage:
<ul>
<li>Use detailed captions to describe the speaker and desired characteristics (e.g., "Salam speaks in a slightly expressive tone, with clear audio quality and a moderate pace.").</li>
<li>For best results, reference specific named speakers provided in the model card on the <a href="https://huggingface.co/ai4bharat/indic-parler-tts#%F0%9F%8E%AF-using-a-specific-speaker">model page</a>.</li>
<li>Include terms like <b>"very clear audio"</b> or <b>"slightly noisy audio"</b> to control the audio quality and background ambiance.</li>
<li>Punctuation can be used to shape prosody (e.g., commas add pauses for natural phrasing).</li>
<li>If unsure about what caption to use, you can start with: <b>"The speaker speaks naturally. The recording is very high quality with no background noise."</b></li>
</ul>
</p>
"""
)
with gr.Tab("Finetuned"):
with gr.Row():
with gr.Column():
input_text = gr.Textbox(label="Input Text", lines=2, value=finetuned_examples[0][0], elem_id="input_text")
description = gr.Textbox(label="Description", lines=2, value=finetuned_examples[0][1], elem_id="input_description")
run_button = gr.Button("Generate Audio", variant="primary")
with gr.Column():
audio_out = gr.Audio(label="Parler-TTS generation", format="mp3", elem_id="audio_out", autoplay=True)
inputs = [input_text, description]
outputs = [audio_out]
gr.Examples(examples=finetuned_examples, fn=generate_finetuned, inputs=inputs, outputs=outputs, cache_examples=False)
run_button.click(fn=generate_finetuned, inputs=inputs, outputs=outputs, queue=True)
with gr.Tab("Pretrained"):
with gr.Row():
with gr.Column():
input_text = gr.Textbox(label="Input Text", lines=2, value=default_text, elem_id="input_text")
description = gr.Textbox(label="Description", lines=2, value="", elem_id="input_description")
run_button = gr.Button("Generate Audio", variant="primary")
with gr.Column():
audio_out = gr.Audio(label="Parler-TTS generation", format="mp3", elem_id="audio_out", autoplay=True)
inputs = [input_text, description]
outputs = [audio_out]
gr.Examples(examples=examples, fn=generate_base, inputs=inputs, outputs=outputs, cache_examples=False)
run_button.click(fn=generate_base, inputs=inputs, outputs=outputs, queue=True)
gr.HTML(
"""
If you'd like to learn more about how the model was trained or explore fine-tuning it yourself, visit the <a href="https://github.com/huggingface/parler-tts">Parler-TTS</a> repository on GitHub. The Parler-TTS codebase and associated checkpoints are licensed under the <a href="https://github.com/huggingface/parler-tts/blob/main/LICENSE">Apache 2.0 license</a>.</p>
"""
)
block.queue()
block.launch(share=True)
|