import io import os import math from queue import Queue from threading import Thread from typing import Optional import numpy as np import spaces import gradio as gr import torch import nltk from parler_tts import ParlerTTSForConditionalGeneration from pydub import AudioSegment from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed nltk.download('punkt_tab') device = "cuda:0" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" torch_dtype = torch.bfloat16 if device != "cpu" else torch.float32 repo_id = "ai4bharat/indic-parler-tts-pretrained" finetuned_repo_id = "ai4bharat/indic-parler-tts" model = ParlerTTSForConditionalGeneration.from_pretrained( repo_id, attn_implementation="eager", torch_dtype=torch_dtype, ).to(device) finetuned_model = ParlerTTSForConditionalGeneration.from_pretrained( finetuned_repo_id, attn_implementation="eager", torch_dtype=torch_dtype, ).to(device) tokenizer = AutoTokenizer.from_pretrained(repo_id) description_tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-large") feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id) SAMPLE_RATE = feature_extractor.sampling_rate SEED = 42 default_text = "Please surprise me and speak in whatever voice you enjoy." examples = [ [ "मुले बागेत खेळत आहेत आणि पक्षी किलबिलाट करत आहेत.", "Sunita speaks slowly in a calm, moderate-pitched voice, delivering the news with a neutral tone. The recording is very high quality with no background noise.", 3.0 ], [ "আমাদের ছোটো নদী চলে বাঁকে বাঁকে বৈশাখ মাসে তার হাঁটু জল থাকে।।", "Arjun speaks at a moderate pace and pitch, with a clear, neutral tone and no emotional emphasis. The recording is very high quality with no background noise.", 3.0 ], [ "குழந்தைகள் தோட்டத்தில் விளையாடுகிறார்கள், பறவைகள் கிண்டல் செய்கின்றன.", "Jaya speaks with a slightly low-pitched, quite monotone voice at a slightly faster-than-average pace in a confined space with very clear audio.", 3.0 ] ] finetuned_examples = [ [ "मुले बागेत खेळत आहेत आणि पक्षी किलबिलाट करत आहेत.", "Sunita speaks slowly in a calm, moderate-pitched voice, delivering the news with a neutral tone. The recording is very high quality with no background noise.", 3.0 ], [ "আমাদের ছোটো নদী চলে বাঁকে বাঁকে বৈশাখ মাসে তার হাঁটু জল থাকে।", "Arjun speaks at a moderate pace and pitch, with a clear, neutral tone and no emotional emphasis. The recording is very high quality with no background noise.", 3.0 ], [ "குழந்தைகள் தோட்டத்தில் விளையாடுகிறார்கள், பறவைகள் கிண்டல் செய்கின்றன.", "Jaya speaks with a slightly low-pitched, quite monotone voice at a slightly faster-than-average pace in a confined space with very clear audio.", 3.0 ] ] def numpy_to_mp3(audio_array, sampling_rate): # Normalize audio_array if it's floating-point if np.issubdtype(audio_array.dtype, np.floating): max_val = np.max(np.abs(audio_array)) audio_array = (audio_array / max_val) * 32767 # Normalize to 16-bit range audio_array = audio_array.astype(np.int16) # Create an audio segment from the numpy array audio_segment = AudioSegment( audio_array.tobytes(), frame_rate=sampling_rate, sample_width=audio_array.dtype.itemsize, channels=1 ) # Export the audio segment to MP3 bytes - use a high bitrate to maximise quality mp3_io = io.BytesIO() audio_segment.export(mp3_io, format="mp3", bitrate="320k") # Get the MP3 bytes mp3_bytes = mp3_io.getvalue() mp3_io.close() return mp3_bytes sampling_rate = model.audio_encoder.config.sampling_rate frame_rate = model.audio_encoder.config.frame_rate @spaces.GPU def generate_base(text, description,): # Initialize variables chunk_size = 25 # Process max 25 words or a sentence at a time # Tokenize the full text and description inputs = description_tokenizer(description, return_tensors="pt").to(device) sentences_text = nltk.sent_tokenize(text) # this gives us a list of sentences curr_sentence = "" chunks = [] for sentence in sentences_text: candidate = " ".join([curr_sentence, sentence]) if len(candidate.split()) >= chunk_size: chunks.append(curr_sentence) curr_sentence = sentence else: curr_sentence = candidate if curr_sentence != "": chunks.append(curr_sentence) print(chunks) all_audio = [] # Process each chunk for chunk in chunks: # Tokenize the chunk prompt = tokenizer(chunk, return_tensors="pt").to(device) # Generate audio for the chunk generation = model.generate( input_ids=inputs.input_ids, attention_mask=inputs.attention_mask, prompt_input_ids=prompt.input_ids, prompt_attention_mask=prompt.attention_mask, do_sample=True, return_dict_in_generate=True ) # Extract audio from generation if hasattr(generation, 'sequences') and hasattr(generation, 'audios_length'): audio = generation.sequences[0, :generation.audios_length[0]] audio_np = audio.to(torch.float32).cpu().numpy().squeeze() if len(audio_np.shape) > 1: audio_np = audio_np.flatten() all_audio.append(audio_np) # Combine all audio chunks combined_audio = np.concatenate(all_audio) # Convert to expected format and yield print(f"Sample of length: {round(combined_audio.shape[0] / sampling_rate, 2)} seconds") yield numpy_to_mp3(combined_audio, sampling_rate=sampling_rate) @spaces.GPU def generate_finetuned(text, description): # Initialize variables chunk_size = 25 # Process max 25 words or a sentence at a time # Tokenize the full text and description inputs = description_tokenizer(description, return_tensors="pt").to(device) sentences_text = nltk.sent_tokenize(text) # this gives us a list of sentences curr_sentence = "" chunks = [] for sentence in sentences_text: candidate = " ".join([curr_sentence, sentence]) if len(candidate.split()) >= chunk_size: chunks.append(curr_sentence) curr_sentence = sentence else: curr_sentence = candidate if curr_sentence != "": chunks.append(curr_sentence) print(chunks) all_audio = [] # Process each chunk for chunk in chunks: # Tokenize the chunk prompt = tokenizer(chunk, return_tensors="pt").to(device) # Generate audio for the chunk generation = finetuned_model.generate( input_ids=inputs.input_ids, attention_mask=inputs.attention_mask, prompt_input_ids=prompt.input_ids, prompt_attention_mask=prompt.attention_mask, do_sample=True, return_dict_in_generate=True ) # Extract audio from generation if hasattr(generation, 'sequences') and hasattr(generation, 'audios_length'): audio = generation.sequences[0, :generation.audios_length[0]] audio_np = audio.to(torch.float32).cpu().numpy().squeeze() if len(audio_np.shape) > 1: audio_np = audio_np.flatten() all_audio.append(audio_np) # Combine all audio chunks combined_audio = np.concatenate(all_audio) # Convert to expected format and yield print(f"Sample of length: {round(combined_audio.shape[0] / sampling_rate, 2)} seconds") yield numpy_to_mp3(combined_audio, sampling_rate=sampling_rate) css = """ #share-btn-container { display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem; margin-top: 10px; margin-left: auto; flex: unset !important; } #share-btn { all: initial; color: #ffffff; font-weight: 600; cursor: pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important; right:0; } #share-btn * { all: unset !important; } #share-btn-container div:nth-child(-n+2){ width: auto !important; min-height: 0px !important; } #share-btn-container .wrap { display: none !important; } """ with gr.Blocks(css=css) as block: gr.HTML( """

Parler-TTS 🗣️

""" ) gr.HTML( f"""

ParlerTTS is a training and inference library for high-quality text-to-speech (TTS) models. This demonstration highlights the flexibility of the IndicParlerTTS model, which generates natural, expressive speech for over 22 Indian languages, using a simple text prompt to control features like speaker style, tone, pitch, pace, and more.

Tips for effective usage:

""" ) with gr.Tab("Finetuned"): with gr.Row(): with gr.Column(): input_text = gr.Textbox(label="Input Text", lines=2, value=finetuned_examples[0][0], elem_id="input_text") description = gr.Textbox(label="Description", lines=2, value=finetuned_examples[0][1], elem_id="input_description") run_button = gr.Button("Generate Audio", variant="primary") with gr.Column(): audio_out = gr.Audio(label="Parler-TTS generation", format="mp3", elem_id="audio_out", autoplay=True) inputs = [input_text, description] outputs = [audio_out] gr.Examples(examples=finetuned_examples, fn=generate_finetuned, inputs=inputs, outputs=outputs, cache_examples=False) run_button.click(fn=generate_finetuned, inputs=inputs, outputs=outputs, queue=True) with gr.Tab("Pretrained"): with gr.Row(): with gr.Column(): input_text = gr.Textbox(label="Input Text", lines=2, value=default_text, elem_id="input_text") description = gr.Textbox(label="Description", lines=2, value="", elem_id="input_description") run_button = gr.Button("Generate Audio", variant="primary") with gr.Column(): audio_out = gr.Audio(label="Parler-TTS generation", format="mp3", elem_id="audio_out", autoplay=True) inputs = [input_text, description] outputs = [audio_out] gr.Examples(examples=examples, fn=generate_base, inputs=inputs, outputs=outputs, cache_examples=False) run_button.click(fn=generate_base, inputs=inputs, outputs=outputs, queue=True) gr.HTML( """ If you'd like to learn more about how the model was trained or explore fine-tuning it yourself, visit the Parler-TTS repository on GitHub. The Parler-TTS codebase and associated checkpoints are licensed under the Apache 2.0 license.

""" ) block.queue() block.launch(share=True)