Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
3 |
+
import streamlit as st
|
4 |
+
|
5 |
+
def generate_blog(title, model_name='gpt2', max_length=500):
|
6 |
+
# Check if a GPU is available
|
7 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
8 |
+
st.write(f"Using device: {device}")
|
9 |
+
|
10 |
+
# Load the tokenizer and model
|
11 |
+
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
12 |
+
model = GPT2LMHeadModel.from_pretrained(model_name).to(device)
|
13 |
+
|
14 |
+
# Prepare the input
|
15 |
+
input_ids = tokenizer.encode(title, return_tensors='pt').to(device)
|
16 |
+
|
17 |
+
# Generate text
|
18 |
+
output = model.generate(input_ids, max_length=max_length, num_return_sequences=1, no_repeat_ngram_size=2, early_stopping=True)
|
19 |
+
|
20 |
+
# Decode the generated text
|
21 |
+
blog_post = tokenizer.decode(output[0], skip_special_tokens=True)
|
22 |
+
|
23 |
+
return blog_post
|
24 |
+
|
25 |
+
st.title("AI Blog Writer")
|
26 |
+
st.write("Enter a blog title, and the AI will generate a blog post for you!")
|
27 |
+
|
28 |
+
title = st.text_input("Enter the blog title:")
|
29 |
+
|
30 |
+
if st.button("Generate Blog"):
|
31 |
+
if title:
|
32 |
+
with st.spinner("Generating blog post..."):
|
33 |
+
blog_post = generate_blog(title)
|
34 |
+
st.subheader("Generated Blog Post")
|
35 |
+
st.write(blog_post)
|
36 |
+
else:
|
37 |
+
st.warning("Please enter a blog title.")
|