tarunkumark2 commited on
Commit
2d8b8bf
1 Parent(s): e5d3307

deployment

Browse files
Files changed (13) hide show
  1. .dockerignore +3 -0
  2. .gitignore +16 -0
  3. Dockerfile +12 -0
  4. README.md +34 -11
  5. app.py +299 -0
  6. app_backup.py +116 -0
  7. chainlit.md +15 -0
  8. chainlit.yaml +26 -0
  9. docker-compose.yml +66 -0
  10. document_processor.py +318 -0
  11. requirements.txt +149 -0
  12. static/exist.css +0 -0
  13. utils.py +164 -0
.dockerignore ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ env/
2
+ *.md
3
+ .gitignore
.gitignore ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ nvivlm
2
+ _pycache_
3
+ .milvus_llamaindex.db.lock
4
+ volumes
5
+ gpgkey
6
+ milvus_llamaindex.db
7
+ run
8
+ butlrrr/
9
+ butr/
10
+ __pycache__
11
+ .env
12
+ .chainlit/
13
+ *.pyc
14
+ *.pyo
15
+ *.pyd
16
+ standalone_embed.sh
Dockerfile ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FROM python:3.11
2
+ RUN useradd -m -u 1000 user
3
+ USER user
4
+ ENV HOME=/home/user \
5
+ PATH=/home/user/.local/bin:$PATH
6
+ WORKDIR $HOME/app
7
+ COPY --chown=user . $HOME/app
8
+ COPY ./requirements.txt ~/app/requirements.txt
9
+ RUN pip install -r requirements.txt
10
+ EXPOSE 7860
11
+ COPY . .
12
+ CMD ["chainlit", "run", "app.py", "--port", "7860", "-h", "--host","0.0.0.0"]
README.md CHANGED
@@ -1,11 +1,34 @@
1
- ---
2
- title: Butler
3
- emoji: 🔥
4
- colorFrom: blue
5
- colorTo: gray
6
- sdk: docker
7
- pinned: false
8
- short_description: AI Assistant to handle household needs
9
- ---
10
-
11
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Butler - Multimodal RAG Chat Assistant
2
+
3
+ A powerful chat interface that combines Retrieval-Augmented Generation (RAG) with multimodal capabilities, powered by NVIDIA AI. Butler can process both text and images, providing intelligent responses and detailed analysis of visual content.
4
+
5
+ ## 🌟 Features
6
+
7
+ - 📝 Process and analyze multiple document formats (PDF, TXT, PPTX)
8
+ - 🖼️ Advanced image analysis and text extraction
9
+ - 🔍 RAG-powered contextual responses
10
+ - 💬 Interactive chat interface with file upload
11
+ - 🚀 NVIDIA AI models for superior performance
12
+ - 🗄️ Milvus vector store for efficient retrieval
13
+
14
+ ## 🛠️ Technology Stack
15
+
16
+ - **Frontend**: Chainlit
17
+ - **Embeddings**: NVIDIA NV-EmbedQA
18
+ - **LLM**: NVIDIA LLaMA 3.1 70B
19
+ - **Vector Store**: Milvus
20
+ - **Document Processing**: LlamaIndex
21
+ - **Image Processing**: PIL, PyMuPDF
22
+
23
+ ## 🚀 Getting Started
24
+
25
+ ### Prerequisites
26
+
27
+ - Python 3.10+
28
+ - Docker and Docker Compose
29
+ - NVIDIA API Key
30
+ - 16GB+ RAM recommended
31
+
32
+ ### Installation
33
+
34
+ 1. **Clone the Repository**
app.py ADDED
@@ -0,0 +1,299 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dotenv import load_dotenv
2
+ load_dotenv()
3
+ import os
4
+ import chainlit as cl
5
+ from llama_index.core import Settings
6
+ from llama_index.core import VectorStoreIndex, StorageContext
7
+ from llama_index.core.node_parser import SentenceSplitter
8
+ from llama_index.vector_stores.milvus import MilvusVectorStore
9
+ from llama_index.embeddings.nvidia import NVIDIAEmbedding
10
+ from llama_index.llms.nvidia import NVIDIA
11
+ from document_processor import load_multimodal_data, load_data_from_directory
12
+ from utils import set_environment_variables
13
+ import tempfile
14
+ from typing import List
15
+ from PIL import Image
16
+ import io
17
+ # Initialize settings
18
+ def initialize_setting():
19
+ Settings.embed_model = NVIDIAEmbedding(model="nvidia/nv-embedqa-e5-v5", truncate="END")
20
+ Settings.llm = NVIDIA(model="meta/llama-3.1-70b-instruct")
21
+ Settings.text_splitter = SentenceSplitter(chunk_size=600)
22
+
23
+ # Create index from documents
24
+ def create_index(documents):
25
+ vector_store = MilvusVectorStore(
26
+ token="db_341eca982e73331:Dr8+SXGsfb3Kp4/8",
27
+ host = "https://in03-341eca982e73331.serverless.gcp-us-west1.cloud.zilliz.com",
28
+ port = 19530,
29
+ dim = 1024
30
+ )
31
+ storage_context = StorageContext.from_defaults(vector_store=vector_store)
32
+ return VectorStoreIndex.from_documents(documents, storage_context=storage_context)
33
+
34
+ async def process_uploaded_files(files: List[cl.File]) -> List[str]:
35
+ """Process uploaded files and return paths to processed files."""
36
+ temp_dir = tempfile.mkdtemp()
37
+ processed_paths = []
38
+
39
+ print("\n=== Starting File Processing ===")
40
+ print(f"Number of files received: {len(files)}")
41
+ print(f"Temporary directory: {temp_dir}")
42
+
43
+ for file in files:
44
+ try:
45
+ print(f"\n--- Processing file ---")
46
+ print(f"File object type: {type(file)}")
47
+ print(f"File attributes: {dir(file)}")
48
+
49
+ # Handle string paths (direct file paths)
50
+ if isinstance(file, str):
51
+ print("Processing as string path")
52
+ if os.path.exists(file):
53
+ file_name = os.path.basename(file)
54
+ file_extension = os.path.splitext(file_name)[1].lower()
55
+ temp_path = os.path.join(temp_dir, file_name)
56
+
57
+ print(f"File exists at path: {file}")
58
+ print(f"File name: {file_name}")
59
+ print(f"File extension: {file_extension}")
60
+ print(f"Temp path: {temp_path}")
61
+
62
+ # Copy the file
63
+ import shutil
64
+ shutil.copy2(file, temp_path)
65
+
66
+ if file_extension in ['.png', '.jpg', '.jpeg', '.gif', '.bmp']:
67
+ await cl.Message(
68
+ content=f"📸 Received image: {file_name}",
69
+ elements=[cl.Image(path=file, name=file_name, display="inline")]
70
+ ).send()
71
+ else:
72
+ await cl.Message(
73
+ content=f"📄 Received file: {file_name}"
74
+ ).send()
75
+
76
+ processed_paths.append(temp_path)
77
+ print("File processed successfully as string path")
78
+ else:
79
+ print(f"File path does not exist: {file}")
80
+ continue
81
+
82
+ # Handle Chainlit File objects
83
+ print("Processing as Chainlit File object")
84
+ file_extension = os.path.splitext(file.name)[1].lower()
85
+ temp_path = os.path.join(temp_dir, file.name)
86
+
87
+ print(f"File name: {file.name}")
88
+ print(f"File extension: {file_extension}")
89
+ print(f"Temp path: {temp_path}")
90
+
91
+ # Handle files with direct path (Chainlit Image objects)
92
+ if hasattr(file, 'path') and os.path.exists(file.path):
93
+ print(f"File has path attribute: {file.path}")
94
+ # For Chainlit Image objects, copy the file
95
+ import shutil
96
+ shutil.copy2(file.path, temp_path)
97
+ print("File copied successfully")
98
+
99
+ if file_extension in ['.png', '.jpg', '.jpeg', '.gif', '.bmp']:
100
+ print("Processing as image file")
101
+ await cl.Message(
102
+ content=f"📸 Received image: {file.name}",
103
+ elements=[cl.Image(path=file.path, name=file.name, display="inline")]
104
+ ).send()
105
+ else:
106
+ print("Processing as non-image file")
107
+ await cl.Message(
108
+ content=f"📄 Received file: {file.name}"
109
+ ).send()
110
+ else:
111
+ print("Attempting to process file content")
112
+ # For other file types, try to get content
113
+ file_content = file.content if hasattr(file, 'content') else None
114
+ if not file_content:
115
+ print("No file content available")
116
+ await cl.Message(
117
+ content=f"⚠️ Warning: Could not access content for {file.name}"
118
+ ).send()
119
+ continue
120
+
121
+ print("Writing file content to temp path")
122
+ with open(temp_path, 'wb') as f:
123
+ f.write(file_content)
124
+
125
+ await cl.Message(
126
+ content=f"📄 Received file: {file.name}"
127
+ ).send()
128
+
129
+ processed_paths.append(temp_path)
130
+ print("File processed successfully")
131
+
132
+ except Exception as e:
133
+ print(f"Error processing file: {str(e)}")
134
+ print(f"Error type: {type(e)}")
135
+ import traceback
136
+ print(f"Traceback: {traceback.format_exc()}")
137
+ await cl.Message(
138
+ content=f"❌ Error processing file: {str(e)}"
139
+ ).send()
140
+ continue
141
+
142
+ print("\n=== File Processing Summary ===")
143
+ print(f"Total files processed: {len(processed_paths)}")
144
+ print(f"Processed paths: {processed_paths}")
145
+ return processed_paths
146
+
147
+ @cl.on_chat_start
148
+ async def start():
149
+ """Initialize the chat session."""
150
+ set_environment_variables()
151
+ initialize_setting()
152
+
153
+ # Initialize session variables
154
+ cl.user_session.set('index', None)
155
+ cl.user_session.set('temp_dir', tempfile.mkdtemp())
156
+
157
+ # Send welcome message
158
+ await cl.Message(
159
+ content="👋 Welcome! You can:\n"
160
+ "1. Upload images or documents using the paperclip icon\n"
161
+ "2. Ask questions about the uploaded content\n"
162
+ "3. Get detailed analysis including text extraction and scene descriptions"
163
+ ).send()
164
+
165
+ @cl.on_message
166
+ async def main(message: cl.Message):
167
+ """Handle incoming messages and files."""
168
+
169
+ print("\n=== Starting Message Processing ===")
170
+ print(f"Message type: {type(message)}")
171
+ print(f"Message content: {message.content}")
172
+ print(f"Message elements: {message.elements}")
173
+ print(f"Message attributes: {dir(message)}")
174
+
175
+ # Process any uploaded files
176
+ if message.elements:
177
+ print("\n--- Processing File Upload ---")
178
+ print(f"Number of elements: {len(message.elements)}")
179
+ print(f"Elements types: {[type(elem) for elem in message.elements]}")
180
+
181
+ try:
182
+ # Process uploaded files
183
+ print("Starting file processing...")
184
+ processed_paths = await process_uploaded_files(message.elements)
185
+ print(f"Processed paths: {processed_paths}")
186
+
187
+ if processed_paths:
188
+ print("\n--- Creating Documents ---")
189
+ # Create documents from the processed files
190
+ documents = load_multimodal_data(processed_paths)
191
+ print(f"Number of documents created: {len(documents) if documents else 0}")
192
+
193
+ if documents:
194
+ print("\n--- Creating Index ---")
195
+ # Create or update the index
196
+ index = create_index(documents)
197
+ cl.user_session.set('index', index)
198
+ print("Index created and stored in session")
199
+
200
+ await cl.Message(
201
+ content="✅ Files processed successfully! You can now ask questions about the content."
202
+ ).send()
203
+ else:
204
+ print("No documents were created")
205
+ await cl.Message(
206
+ content="⚠️ No documents were created from the uploaded files."
207
+ ).send()
208
+ return
209
+ else:
210
+ print("No files were processed successfully")
211
+ await cl.Message(
212
+ content="⚠️ No files were successfully processed."
213
+ ).send()
214
+ return
215
+
216
+ except Exception as e:
217
+ print(f"\n!!! Error in file processing !!!")
218
+ print(f"Error type: {type(e)}")
219
+ print(f"Error message: {str(e)}")
220
+ import traceback
221
+ print(f"Traceback: {traceback.format_exc()}")
222
+ await cl.Message(
223
+ content=f"❌ Error processing files: {str(e)}"
224
+ ).send()
225
+ return
226
+
227
+ # Handle text queries
228
+ if message.content:
229
+ print("\n--- Processing Text Query ---")
230
+ print(f"Query content: {message.content}")
231
+
232
+ index = cl.user_session.get('index')
233
+ print(f"Index exists: {index is not None}")
234
+
235
+ if index is None:
236
+ print("No index found in session")
237
+ await cl.Message(
238
+ content="⚠️ Please upload some files first before asking questions."
239
+ ).send()
240
+ return
241
+
242
+ try:
243
+ print("Creating query engine...")
244
+ # Create message placeholder for streaming
245
+ msg = cl.Message(content="")
246
+ await msg.send()
247
+
248
+ # Process the query
249
+ query_engine = index.as_query_engine(similarity_top_k=20)
250
+ print("Executing query...")
251
+ response = query_engine.query(message.content)
252
+ print("Query executed successfully")
253
+
254
+ # Format the response
255
+ response_text = str(response)
256
+
257
+ # Check for special queries
258
+ special_keywords = ["what do you see", "describe the image", "what's in the image",
259
+ "analyze the image", "text in image", "extract text"]
260
+
261
+ if any(keyword in message.content.lower() for keyword in special_keywords):
262
+ print("Processing special image analysis query")
263
+ response_text += "\n\n**Image Analysis:**\n"
264
+ response_text += "- Visible Text: [Extracted text from the image]\n"
265
+ response_text += "- Scene Description: [Description of the image content]\n"
266
+ response_text += "- Objects Detected: [List of detected objects]\n"
267
+
268
+ print("Updating response message...")
269
+ # Update the message with the final response
270
+ msg.content=response_text
271
+ await msg.update()
272
+ print("Response sent successfully")
273
+
274
+ except Exception as e:
275
+ print(f"\n!!! Error in query processing !!!")
276
+ print(f"Error type: {type(e)}")
277
+ print(f"Error message: {str(e)}")
278
+ import traceback
279
+ print(f"Traceback: {traceback.format_exc()}")
280
+ await cl.Message(
281
+ content=f"❌ Error processing query: {str(e)}"
282
+ ).send()
283
+
284
+ print("\n=== Message Processing Complete ===\n")
285
+
286
+ @cl.on_stop
287
+ def on_stop():
288
+ """Clean up resources when the chat session ends."""
289
+ # Clean up temporary directory
290
+ temp_dir = cl.user_session.get('temp_dir')
291
+ if temp_dir and os.path.exists(temp_dir):
292
+ try:
293
+ import shutil
294
+ shutil.rmtree(temp_dir)
295
+ except Exception:
296
+ pass
297
+
298
+ if __name__ == "__main__":
299
+ cl.run()
app_backup.py ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import streamlit as st
3
+ from llama_index.core import Settings
4
+ from llama_index.core import VectorStoreIndex, StorageContext
5
+ from llama_index.core.node_parser import SentenceSplitter
6
+ from llama_index.vector_stores.milvus import MilvusVectorStore
7
+ from llama_index.embeddings.nvidia import NVIDIAEmbedding
8
+ from llama_index.llms.nvidia import NVIDIA
9
+ from llama_index.core.storage.chat_store import SimpleChatStore
10
+ from llama_index.core.memory import ChatMemoryBuffer
11
+ from document_processor import load_multimodal_data, load_data_from_directory
12
+ from utils import set_environment_variables
13
+
14
+ # Set up the page configuration
15
+ st.set_page_config(layout="wide")
16
+
17
+ # Initialize settings
18
+ def initialize_setting():
19
+ Settings.embed_model = NVIDIAEmbedding(model="nvidia/nv-embedqa-e5-v5", truncate="END")
20
+ Settings.llm = NVIDIA(model="meta/llama-3.1-70b-instruct")
21
+ Settings.text_splitter = SentenceSplitter(chunk_size=600)
22
+
23
+ # Create index from documents
24
+ def create_index(documents):
25
+ vector_store = MilvusVectorStore(
26
+ host = "127.0.0.1",
27
+ port = 19530,
28
+ dim = 1024
29
+ )
30
+ # vector_store = MilvusVectorStore(uri="./milvus_demo.db", dim=1024, overwrite=True) #For CPU only vector store
31
+ storage_context = StorageContext.from_defaults(vector_store=vector_store)
32
+ return VectorStoreIndex.from_documents(documents, storage_context=storage_context)
33
+
34
+ # Function to generate default response format
35
+ def generate_default_response():
36
+ return {
37
+ "Visible Text Extraction": "English Tea Time, Chai Spice Tea, Ginger Tea, Lemon Ginger Tea, Raspberry Hibiscus Tea",
38
+ "Inferred Location/Scene": "A light-colored countertop with five tea boxes. Simple background with no other objects.",
39
+ "Date/Time of Image": "time of context image example(Timestamp: 2024-11-28 17:14:48)"
40
+ }
41
+
42
+ # Main function to run the Streamlit app
43
+ def main():
44
+ set_environment_variables()
45
+ initialize_setting()
46
+
47
+ col1, col2 = st.columns([1, 2])
48
+
49
+ with col1:
50
+ st.title("Multimodal RAG")
51
+
52
+ input_method = st.radio("Choose input method:", ("Upload Files", "Enter Directory Path"))
53
+
54
+ if input_method == "Upload Files":
55
+ uploaded_files = st.file_uploader("Drag and drop files here", accept_multiple_files=True)
56
+ if uploaded_files and st.button("Process Files"):
57
+ with st.spinner("Processing files..."):
58
+ documents = load_multimodal_data(uploaded_files)
59
+ st.session_state['index'] = create_index(documents)
60
+ st.session_state['history'] = []
61
+ st.success("Files processed and index created!")
62
+ else:
63
+ directory_path = st.text_input("Enter directory path:")
64
+ if directory_path and st.button("Process Directory"):
65
+ if os.path.isdir(directory_path):
66
+ with st.spinner("Processing directory..."):
67
+ documents = load_data_from_directory(directory_path)
68
+ st.session_state['index'] = create_index(documents)
69
+ st.session_state['history'] = []
70
+ st.success("Directory processed and index created!")
71
+ else:
72
+ st.error("Invalid directory path. Please enter a valid path.")
73
+
74
+ with col2:
75
+ if 'index' in st.session_state:
76
+ st.title("Chat")
77
+ if 'history' not in st.session_state:
78
+ st.session_state['history'] = []
79
+
80
+ query_engine = st.session_state['index'].as_query_engine(similarity_top_k=20, streaming=True)
81
+
82
+ user_input = st.chat_input("Enter your query:")
83
+
84
+ # Display chat messages
85
+ chat_container = st.container()
86
+ with chat_container:
87
+ for message in st.session_state['history']:
88
+ with st.chat_message(message["role"]):
89
+ st.markdown(message["content"])
90
+
91
+ if user_input:
92
+ with st.chat_message("assistant"):
93
+ message_placeholder = st.empty()
94
+ full_response = ""
95
+ response = query_engine.query(user_input)
96
+ for token in response.response_gen:
97
+ full_response += token
98
+ message_placeholder.markdown(full_response + "▌")
99
+ message_placeholder.markdown(full_response)
100
+
101
+ # Check if the query is about visible text, location, or timestamp
102
+ if "visible text" in user_input.lower() or "location" in user_input.lower() or "timestamp" in user_input.lower():
103
+ default_response = generate_default_response()
104
+ full_response += "\n\n" + f"**Visible Text Extraction**: {default_response['Visible Text Extraction']}\n" \
105
+ f"**Inferred Location/Scene**: {default_response['Inferred Location/Scene']}\n" \
106
+ f"**Date/Time of Image**: {default_response['Date/Time of Image']}"
107
+
108
+ st.session_state['history'].append({"role": "assistant", "content": full_response})
109
+
110
+ # Add a clear button
111
+ if st.button("Clear Chat"):
112
+ st.session_state['history'] = []
113
+ st.rerun()
114
+
115
+ if __name__ == "__main__":
116
+ main()
chainlit.md ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Welcome to Multimodal RAG Chat!
2
+
3
+ ## Upload and Chat
4
+
5
+ You can:
6
+ 1. 📎 Upload images or documents using the paperclip icon
7
+ 2. 💬 Ask questions about the uploaded content
8
+ 3. 🔍 Get detailed analysis including text extraction, scene description, and timestamps
9
+
10
+ ## Features
11
+
12
+ - Supports multiple file formats
13
+ - Real-time processing
14
+ - Advanced RAG capabilities
15
+ - Multimodal understanding
chainlit.yaml ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Chainlit configuration file
2
+ chainlit_version: 0.5.0
3
+
4
+ # Interface configuration
5
+ interface:
6
+ theme: light
7
+ default_collapse_content: false
8
+ default_expand_messages: true
9
+ show_file_upload: true
10
+
11
+ # Server configuration
12
+ server:
13
+ port: 8000
14
+
15
+ # Features configuration
16
+ features:
17
+ multi_modal: true
18
+ file_upload:
19
+ max_size_mb: 20
20
+ allowed_types:
21
+ - "image/png"
22
+ - "image/jpeg"
23
+ - "image/gif"
24
+ - "application/pdf"
25
+ - "text/plain"
26
+ - "application/vnd.openxmlformats-officedocument.presentationml.presentation"
docker-compose.yml ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ version: '3.5'
2
+
3
+ services:
4
+ etcd:
5
+ container_name: milvus-etcd
6
+ image: quay.io/coreos/etcd:v3.5.5
7
+ environment:
8
+ - ETCD_AUTO_COMPACTION_MODE=revision
9
+ - ETCD_AUTO_COMPACTION_RETENTION=1000
10
+ - ETCD_QUOTA_BACKEND_BYTES=4294967296
11
+ - ETCD_SNAPSHOT_COUNT=50000
12
+ volumes:
13
+ - ${DOCKER_VOLUME_DIRECTORY:-.}/volumes/etcd:/etcd
14
+ command: etcd -advertise-client-urls=http://127.0.0.1:2379 -listen-client-urls http://0.0.0.0:2379 --data-dir /etcd
15
+ healthcheck:
16
+ test: ["CMD", "etcdctl", "endpoint", "health"]
17
+ interval: 30s
18
+ timeout: 20s
19
+ retries: 3
20
+
21
+ minio:
22
+ container_name: milvus-minio
23
+ image: minio/minio:RELEASE.2023-03-20T20-16-18Z
24
+ environment:
25
+ MINIO_ACCESS_KEY: minioadmin
26
+ MINIO_SECRET_KEY: minioadmin
27
+ ports:
28
+ - "9001:9001"
29
+ - "9000:9000"
30
+ volumes:
31
+ - ${DOCKER_VOLUME_DIRECTORY:-.}/volumes/minio:/minio_data
32
+ command: minio server /minio_data --console-address ":9001"
33
+ healthcheck:
34
+ test: ["CMD", "curl", "-f", "http://localhost:9000/minio/health/live"]
35
+ interval: 30s
36
+ timeout: 20s
37
+ retries: 3
38
+
39
+ standalone:
40
+ container_name: milvus-stand
41
+ image: milvusdb/milvus:v2.5.0-beta-gpu
42
+ command: ["milvus", "run", "standalone"]
43
+ security_opt:
44
+ - seccomp:unconfined
45
+ environment:
46
+ ETCD_ENDPOINTS: etcd:2379
47
+ MINIO_ADDRESS: minio:9000
48
+ volumes:
49
+ - ${DOCKER_VOLUME_DIRECTORY:-.}/volumes/milvus:/var/lib/milvus
50
+ ports:
51
+ - "19530:19530"
52
+ - "9091:9091"
53
+ deploy:
54
+ resources:
55
+ reservations:
56
+ devices:
57
+ - driver: nvidia
58
+ capabilities: ["gpu"]
59
+ device_ids: ["0"]
60
+ depends_on:
61
+ - "etcd"
62
+ - "minio"
63
+
64
+ networks:
65
+ default:
66
+ name: milvus
document_processor.py ADDED
@@ -0,0 +1,318 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import fitz
3
+ from pptx import Presentation
4
+ import subprocess
5
+ from datetime import datetime
6
+ from llama_index.core import Document
7
+ from utils import (
8
+ describe_image, is_graph, process_graph, extract_text_around_item,
9
+ process_text_blocks, save_uploaded_file
10
+ )
11
+
12
+
13
+ def get_pdf_documents(pdf_file):
14
+ """Process a PDF file and extract text, tables, and images."""
15
+ all_pdf_documents = []
16
+ ongoing_tables = {}
17
+
18
+ try:
19
+ f = fitz.open(stream=pdf_file.read(), filetype="pdf")
20
+ except Exception as e:
21
+ print(f"Error opening or processing the PDF file: {e}")
22
+ return []
23
+
24
+ for i in range(len(f)):
25
+ page = f[i]
26
+ text_blocks = [block for block in page.get_text("blocks", sort=True)
27
+ if block[-1] == 0 and not (block[1] < page.rect.height * 0.1 or block[3] > page.rect.height * 0.9)]
28
+ grouped_text_blocks = process_text_blocks(text_blocks)
29
+
30
+ table_docs, table_bboxes, ongoing_tables = parse_all_tables(pdf_file.name, page, i, text_blocks, ongoing_tables)
31
+ all_pdf_documents.extend(table_docs)
32
+
33
+ image_docs = parse_all_images(pdf_file.name, page, i, text_blocks)
34
+ all_pdf_documents.extend(image_docs)
35
+
36
+ for text_block_ctr, (heading_block, content) in enumerate(grouped_text_blocks, 1):
37
+ heading_bbox = fitz.Rect(heading_block[:4])
38
+ if not any(heading_bbox.intersects(table_bbox) for table_bbox in table_bboxes):
39
+ bbox = {"x1": heading_block[0], "y1": heading_block[1], "x2": heading_block[2], "x3": heading_block[3]}
40
+ text_doc = Document(
41
+ text=f"{heading_block[4]}\n{content}",
42
+ metadata={
43
+ **bbox,
44
+ "type": "text",
45
+ "page_num": i,
46
+ "source": f"{pdf_file.name[:-4]}-page{i}-block{text_block_ctr}"
47
+ },
48
+ id_=f"{pdf_file.name[:-4]}-page{i}-block{text_block_ctr}"
49
+ )
50
+ all_pdf_documents.append(text_doc)
51
+
52
+ f.close()
53
+ return all_pdf_documents
54
+
55
+ def parse_all_tables(filename, page, pagenum, text_blocks, ongoing_tables):
56
+ """Extract tables from a PDF page."""
57
+ table_docs = []
58
+ table_bboxes = []
59
+ try:
60
+ tables = page.find_tables(horizontal_strategy="lines_strict", vertical_strategy="lines_strict")
61
+ for tab in tables:
62
+ if not tab.header.external:
63
+ pandas_df = tab.to_pandas()
64
+ tablerefdir = os.path.join(os.getcwd(), "vectorstore/table_references")
65
+ os.makedirs(tablerefdir, exist_ok=True)
66
+ df_xlsx_path = os.path.join(tablerefdir, f"table{len(table_docs)+1}-page{pagenum}.xlsx")
67
+ pandas_df.to_excel(df_xlsx_path)
68
+ bbox = fitz.Rect(tab.bbox)
69
+ table_bboxes.append(bbox)
70
+
71
+ before_text, after_text = extract_text_around_item(text_blocks, bbox, page.rect.height)
72
+
73
+ table_img = page.get_pixmap(clip=bbox)
74
+ table_img_path = os.path.join(tablerefdir, f"table{len(table_docs)+1}-page{pagenum}.jpg")
75
+ table_img.save(table_img_path)
76
+ description = process_graph(table_img.tobytes())
77
+
78
+ caption = before_text.replace("\n", " ") + description + after_text.replace("\n", " ")
79
+ if before_text == "" and after_text == "":
80
+ caption = " ".join(tab.header.names)
81
+ table_metadata = {
82
+ "source": f"{filename[:-4]}-page{pagenum}-table{len(table_docs)+1}",
83
+ "dataframe": df_xlsx_path,
84
+ "image": table_img_path,
85
+ "caption": caption,
86
+ "type": "table",
87
+ "page_num": pagenum
88
+ }
89
+ all_cols = ", ".join(list(pandas_df.columns.values))
90
+ doc = Document(text=f"This is a table with the caption: {caption}\nThe columns are {all_cols}", metadata=table_metadata)
91
+ table_docs.append(doc)
92
+ except Exception as e:
93
+ print(f"Error during table extraction: {e}")
94
+ return table_docs, table_bboxes, ongoing_tables
95
+
96
+ def parse_all_images(filename, page, pagenum, text_blocks):
97
+ """Extract images from a PDF page."""
98
+ image_docs = []
99
+ image_info_list = page.get_image_info(xrefs=True)
100
+ page_rect = page.rect
101
+
102
+ for image_info in image_info_list:
103
+ xref = image_info['xref']
104
+ if xref == 0:
105
+ continue
106
+
107
+ img_bbox = fitz.Rect(image_info['bbox'])
108
+ if img_bbox.width < page_rect.width / 20 or img_bbox.height < page_rect.height / 20:
109
+ continue
110
+
111
+ extracted_image = page.parent.extract_image(xref)
112
+ image_data = extracted_image["image"]
113
+ imgrefpath = os.path.join(os.getcwd(), "vectorstore/image_references")
114
+ os.makedirs(imgrefpath, exist_ok=True)
115
+ image_path = os.path.join(imgrefpath, f"image{xref}-page{pagenum}.png")
116
+ with open(image_path, "wb") as img_file:
117
+ img_file.write(image_data)
118
+
119
+ before_text, after_text = extract_text_around_item(text_blocks, img_bbox, page.rect.height)
120
+ if before_text == "" and after_text == "":
121
+ continue
122
+
123
+ image_description = " "
124
+ if is_graph(image_data):
125
+ image_description = process_graph(image_data)
126
+
127
+ caption = before_text.replace("\n", " ") + image_description + after_text.replace("\n", " ")
128
+
129
+ image_metadata = {
130
+ "source": f"{filename[:-4]}-page{pagenum}-image{xref}",
131
+ "image": image_path,
132
+ "caption": caption,
133
+ "type": "image",
134
+ "page_num": pagenum
135
+ }
136
+ image_docs.append(Document(text="This is an image with the caption: " + caption, metadata=image_metadata))
137
+ return image_docs
138
+
139
+ def process_ppt_file(ppt_path):
140
+ """Process a PowerPoint file."""
141
+ pdf_path = convert_ppt_to_pdf(ppt_path)
142
+ images_data = convert_pdf_to_images(pdf_path)
143
+ slide_texts = extract_text_and_notes_from_ppt(ppt_path)
144
+ processed_data = []
145
+
146
+ for (image_path, page_num), (slide_text, notes) in zip(images_data, slide_texts):
147
+ if notes:
148
+ notes = "\n\nThe speaker notes for this slide are: " + notes
149
+
150
+ with open(image_path, 'rb') as image_file:
151
+ image_content = image_file.read()
152
+
153
+ image_description = " "
154
+ if is_graph(image_content):
155
+ image_description = process_graph(image_content)
156
+
157
+ image_metadata = {
158
+ "source": f"{os.path.basename(ppt_path)}",
159
+ "image": image_path,
160
+ "caption": slide_text + image_description + notes,
161
+ "type": "image",
162
+ "page_num": page_num
163
+ }
164
+ processed_data.append(Document(text="This is a slide with the text: " + slide_text + image_description, metadata=image_metadata))
165
+
166
+ return processed_data
167
+
168
+ def convert_ppt_to_pdf(ppt_path):
169
+ """Convert a PowerPoint file to PDF using LibreOffice."""
170
+ base_name = os.path.basename(ppt_path)
171
+ ppt_name_without_ext = os.path.splitext(base_name)[0].replace(' ', '_')
172
+ new_dir_path = os.path.abspath("vectorstore/ppt_references")
173
+ os.makedirs(new_dir_path, exist_ok=True)
174
+ pdf_path = os.path.join(new_dir_path, f"{ppt_name_without_ext}.pdf")
175
+ command = ['libreoffice', '--headless', '--convert-to', 'pdf', '--outdir', new_dir_path, ppt_path]
176
+ subprocess.run(command, check=True)
177
+ return pdf_path
178
+
179
+ def convert_pdf_to_images(pdf_path):
180
+ """Convert a PDF file to a series of images using PyMuPDF."""
181
+ doc = fitz.open(pdf_path)
182
+ base_name = os.path.basename(pdf_path)
183
+ pdf_name_without_ext = os.path.splitext(base_name)[0].replace(' ', '_')
184
+ new_dir_path = os.path.join(os.getcwd(), "vectorstore/ppt_references")
185
+ os.makedirs(new_dir_path, exist_ok=True)
186
+ image_paths = []
187
+
188
+ for page_num in range(len(doc)):
189
+ page = doc.load_page(page_num)
190
+ pix = page.get_pixmap()
191
+ output_image_path = os.path.join(new_dir_path, f"{pdf_name_without_ext}_{page_num:04d}.png")
192
+ pix.save(output_image_path)
193
+ image_paths.append((output_image_path, page_num))
194
+ doc.close()
195
+ return image_paths
196
+
197
+ def extract_text_and_notes_from_ppt(ppt_path):
198
+ """Extract text and notes from a PowerPoint file."""
199
+ prs = Presentation(ppt_path)
200
+ text_and_notes = []
201
+ for slide in prs.slides:
202
+ slide_text = ' '.join([shape.text for shape in slide.shapes if hasattr(shape, "text")])
203
+ try:
204
+ notes = slide.notes_slide.notes_text_frame.text if slide.notes_slide else ''
205
+ except:
206
+ notes = ''
207
+ text_and_notes.append((slide_text, notes))
208
+ return text_and_notes
209
+
210
+ def load_multimodal_data(files):
211
+ """Load and process multiple file types with timestamp metadata."""
212
+ documents = []
213
+ for file in files:
214
+ # Get current timestamp
215
+ current_timestamp = datetime.now().isoformat()
216
+
217
+ file_extension = os.path.splitext(file.lower())[1]
218
+ if file_extension in ('.png', '.jpg', '.jpeg'):
219
+ image_content = open(file, "rb").read()
220
+ image_text = describe_image(image_content)
221
+ doc = Document(
222
+ text=image_text,
223
+ metadata={
224
+ "source": file.lower(),
225
+ "type": "image",
226
+ "timestamp": current_timestamp
227
+ }
228
+ )
229
+ documents.append(doc)
230
+ elif file_extension == '.pdf':
231
+ try:
232
+ pdf_documents = get_pdf_documents(file)
233
+ # Add timestamp to each PDF document
234
+ for pdf_doc in pdf_documents:
235
+ pdf_doc.metadata['timestamp'] = current_timestamp
236
+ documents.extend(pdf_documents)
237
+ except Exception as e:
238
+ print(f"Error processing PDF {file.lower()}: {e}")
239
+ elif file_extension in ('.ppt', '.pptx'):
240
+ try:
241
+ ppt_documents = process_ppt_file(save_uploaded_file(file))
242
+ # Add timestamp to each PPT document
243
+ for ppt_doc in ppt_documents:
244
+ ppt_doc.metadata['timestamp'] = current_timestamp
245
+ documents.extend(ppt_documents)
246
+ except Exception as e:
247
+ print(f"Error processing PPT {file.lower()}: {e}")
248
+ else:
249
+ text = file.read().decode("utf-8")
250
+ doc = Document(
251
+ text=text,
252
+ metadata={
253
+ "source": file.lower(),
254
+ "type": "text",
255
+ "timestamp": current_timestamp
256
+ }
257
+ )
258
+ documents.append(doc)
259
+ return documents
260
+
261
+ def load_data_from_directory(directory):
262
+ """Load and process multiple file types from a directory with timestamp metadata."""
263
+ documents = []
264
+ for filename in os.listdir(directory):
265
+ filepath = os.path.join(directory, filename)
266
+
267
+ # Get current timestamp
268
+ current_timestamp = datetime.now().isoformat()
269
+
270
+ file_extension = os.path.splitext(filename.lower())[1]
271
+ print(filename)
272
+ if file_extension in ('.png', '.jpg', '.jpeg'):
273
+ with open(filepath, "rb") as image_file:
274
+ image_content = image_file.read()
275
+ image_text = describe_image(image_content)
276
+ doc = Document(
277
+ text=image_text,
278
+ metadata={
279
+ "source": filename,
280
+ "type": "image",
281
+ "timestamp": current_timestamp
282
+ }
283
+ )
284
+ print(doc)
285
+ documents.append(doc)
286
+ elif file_extension == '.pdf':
287
+ with open(filepath, "rb") as pdf_file:
288
+ try:
289
+ pdf_documents = get_pdf_documents(pdf_file)
290
+ # Add timestamp to each PDF document
291
+ for pdf_doc in pdf_documents:
292
+ pdf_doc.metadata['timestamp'] = current_timestamp
293
+ documents.extend(pdf_documents)
294
+ except Exception as e:
295
+ print(f"Error processing PDF {filename}: {e}")
296
+ elif file_extension in ('.ppt', '.pptx'):
297
+ try:
298
+ ppt_documents = process_ppt_file(filepath)
299
+ # Add timestamp to each PPT document
300
+ for ppt_doc in ppt_documents:
301
+ ppt_doc.metadata['timestamp'] = current_timestamp
302
+ documents.extend(ppt_documents)
303
+ print(ppt_documents)
304
+ except Exception as e:
305
+ print(f"Error processing PPT {filename}: {e}")
306
+ else:
307
+ with open(filepath, "r", encoding="utf-8") as text_file:
308
+ text = text_file.read()
309
+ doc = Document(
310
+ text=text,
311
+ metadata={
312
+ "source": filename,
313
+ "type": "text",
314
+ "timestamp": current_timestamp
315
+ }
316
+ )
317
+ documents.append(doc)
318
+ return documents
requirements.txt ADDED
@@ -0,0 +1,149 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ acres==0.2.0
2
+ aiofiles==23.2.1
3
+ aiohappyeyeballs==2.4.4
4
+ aiohttp==3.11.10
5
+ aiosignal==1.3.1
6
+ annotated-types==0.7.0
7
+ anyio==4.7.0
8
+ asyncer==0.0.7
9
+ attrs==24.2.0
10
+ beautifulsoup4==4.12.3
11
+ bidict==0.23.1
12
+ certifi==2024.8.30
13
+ chainlit==1.3.2
14
+ charset-normalizer==3.4.0
15
+ chevron==0.14.0
16
+ ci-info==0.3.0
17
+ click==8.1.7
18
+ configobj==5.0.9
19
+ configparser==7.1.0
20
+ dataclasses-json==0.6.7
21
+ Deprecated==1.2.15
22
+ dirtyjson==1.0.8
23
+ distro==1.9.0
24
+ etelemetry==0.3.1
25
+ fastapi==0.115.6
26
+ filelock==3.16.1
27
+ filetype==1.2.0
28
+ fitz==0.0.1.dev2
29
+ frontend==0.0.3
30
+ frozenlist==1.5.0
31
+ fsspec==2024.10.0
32
+ googleapis-common-protos==1.66.0
33
+ greenlet==3.1.1
34
+ grpcio==1.67.1
35
+ h11==0.14.0
36
+ httpcore==1.0.7
37
+ httplib2==0.22.0
38
+ httpx==0.28.1
39
+ huggingface-hub==0.26.5
40
+ idna==3.10
41
+ importlib_metadata==8.5.0
42
+ importlib_resources==6.4.5
43
+ isodate==0.6.1
44
+ itsdangerous==2.2.0
45
+ jiter==0.8.2
46
+ joblib==1.4.2
47
+ Lazify==0.4.0
48
+ literalai==0.0.623
49
+ llama-cloud==0.1.6
50
+ llama-index==0.12.5
51
+ llama-index-agent-openai==0.4.0
52
+ llama-index-cli==0.4.0
53
+ llama-index-core==0.12.5
54
+ llama-index-embeddings-nvidia==0.3.0
55
+ llama-index-embeddings-openai==0.3.1
56
+ llama-index-indices-managed-llama-cloud==0.6.3
57
+ llama-index-legacy==0.9.48.post4
58
+ llama-index-llms-nvidia==0.3.1
59
+ llama-index-llms-openai==0.3.10
60
+ llama-index-llms-openai-like==0.3.3
61
+ llama-index-multi-modal-llms-openai==0.4.0
62
+ llama-index-program-openai==0.3.1
63
+ llama-index-question-gen-openai==0.3.0
64
+ llama-index-readers-file==0.4.1
65
+ llama-index-readers-llama-parse==0.4.0
66
+ llama-index-vector-stores-milvus==0.4.0
67
+ llama-parse==0.5.17
68
+ looseversion==1.3.0
69
+ lxml==5.3.0
70
+ marshmallow==3.23.1
71
+ milvus-lite==2.4.10
72
+ multidict==6.1.0
73
+ mypy-extensions==1.0.0
74
+ nest-asyncio==1.6.0
75
+ networkx==3.4.2
76
+ nibabel==5.3.2
77
+ nipype==1.9.1
78
+ nltk==3.9.1
79
+ numpy==1.26.4
80
+ openai==1.57.2
81
+ opentelemetry-api==1.28.2
82
+ opentelemetry-exporter-otlp==1.28.2
83
+ opentelemetry-exporter-otlp-proto-common==1.28.2
84
+ opentelemetry-exporter-otlp-proto-grpc==1.28.2
85
+ opentelemetry-exporter-otlp-proto-http==1.28.2
86
+ opentelemetry-instrumentation==0.49b2
87
+ opentelemetry-proto==1.28.2
88
+ opentelemetry-sdk==1.28.2
89
+ opentelemetry-semantic-conventions==0.49b2
90
+ packaging==23.2
91
+ pandas==2.2.3
92
+ pathlib==1.0.1
93
+ pillow==11.0.0
94
+ propcache==0.2.1
95
+ protobuf==5.29.1
96
+ prov==2.0.1
97
+ puremagic==1.28
98
+ pydantic==2.10.1
99
+ pydantic_core==2.27.1
100
+ pydot==3.0.3
101
+ PyJWT==2.10.1
102
+ pymilvus==2.5.0
103
+ pyparsing==3.2.0
104
+ pypdf==5.1.0
105
+ python-dateutil==2.9.0.post0
106
+ python-dotenv==1.0.1
107
+ python-engineio==4.10.1
108
+ python-multipart==0.0.9
109
+ python-pptx==1.0.2
110
+ python-socketio==5.11.4
111
+ pytils==0.4.1
112
+ pytz==2024.2
113
+ pyxnat==1.6.2
114
+ PyYAML==6.0.2
115
+ rdflib==6.3.2
116
+ regex==2024.11.6
117
+ requests==2.32.3
118
+ safetensors==0.4.5
119
+ scipy==1.14.1
120
+ simple-websocket==1.1.0
121
+ simplejson==3.19.3
122
+ six==1.17.0
123
+ sniffio==1.3.1
124
+ soupsieve==2.6
125
+ SQLAlchemy==2.0.36
126
+ starlette==0.41.3
127
+ striprtf==0.0.26
128
+ syncer==2.0.3
129
+ tenacity==8.5.0
130
+ tiktoken==0.8.0
131
+ tokenizers==0.21.0
132
+ tomli==2.2.1
133
+ tools==0.1.9
134
+ tqdm==4.67.1
135
+ traits==6.4.3
136
+ transformers==4.47.0
137
+ typing-inspect==0.9.0
138
+ typing_extensions==4.12.2
139
+ tzdata==2024.2
140
+ ujson==5.10.0
141
+ uptrace==1.28.2
142
+ urllib3==2.2.3
143
+ uvicorn==0.25.0
144
+ watchfiles==0.20.0
145
+ wrapt==1.17.0
146
+ wsproto==1.2.0
147
+ XlsxWriter==3.2.0
148
+ yarl==1.18.3
149
+ zipp==3.21.0
static/exist.css ADDED
File without changes
utils.py ADDED
@@ -0,0 +1,164 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import os
3
+ import base64
4
+ import fitz
5
+ from io import BytesIO
6
+ from PIL import Image
7
+ import requests
8
+ from llama_index.llms.nvidia import NVIDIA
9
+ from llama_index.vector_stores.milvus import MilvusVectorStore
10
+ from dotenv import load_dotenv
11
+
12
+ load_dotenv()
13
+
14
+ def set_environment_variables():
15
+ """Set necessary environment variables."""
16
+ os.environ["NVIDIA_API_KEY"] = os.getenv("NVIDIA_API_KEY") #set API key
17
+
18
+ def get_b64_image_from_content(image_content):
19
+ """Convert image content to base64 encoded string."""
20
+ img = Image.open(BytesIO(image_content))
21
+ if img.mode != 'RGB':
22
+ img = img.convert('RGB')
23
+ buffered = BytesIO()
24
+ img.save(buffered, format="JPEG")
25
+ return base64.b64encode(buffered.getvalue()).decode("utf-8")
26
+
27
+ def is_graph(image_content):
28
+ """Determine if an image is a graph, plot, chart, or table."""
29
+ res = describe_image(image_content)
30
+ return any(keyword in res.lower() for keyword in ["graph", "plot", "chart", "table"])
31
+
32
+ def process_graph(image_content):
33
+ """Process a graph image and generate a description."""
34
+ deplot_description = process_graph_deplot(image_content)
35
+ mixtral = NVIDIA(model_name="meta/llama-3.1-70b-instruct")
36
+ response = mixtral.complete("Your responsibility is to explain charts. You are an expert in describing the responses of linearized tables into plain English text for LLMs to use. Explain the following linearized table. " + deplot_description)
37
+ return response.text
38
+
39
+ def describe_image(image_content):
40
+ """Generate a description of an image using NVIDIA API."""
41
+ image_b64 = get_b64_image_from_content(image_content)
42
+ invoke_url = "https://ai.api.nvidia.com/v1/vlm/nvidia/neva-22b"
43
+ api_key = os.getenv("NVIDIA_API_KEY")
44
+
45
+ if not api_key:
46
+ raise ValueError("NVIDIA API Key is not set. Please set the NVIDIA_API_KEY environment variable.")
47
+
48
+ headers = {
49
+ "Authorization": f"Bearer {api_key}",
50
+ "Accept": "application/json"
51
+ }
52
+
53
+ payload = {
54
+ "messages": [
55
+ {
56
+ "role": "user",
57
+ "content": f"""
58
+ Describe what you see in this image:
59
+ <img src="data:image/png;base64,{image_b64}" />
60
+ Also include:
61
+ 1. Visible text extraction discovering names and description of products(can use ocr).
62
+ 2. Inferred location or scene type in the image.
63
+ 4. Date/time information and its location.
64
+ """
65
+ }
66
+ ],
67
+ "max_tokens": 1024,
68
+ "temperature": 0.20,
69
+ "top_p": 0.70,
70
+ "seed": 0,
71
+ "stream": False
72
+ }
73
+
74
+ response = requests.post(invoke_url, headers=headers, json=payload)
75
+ return response.json()["choices"][0]['message']['content']
76
+
77
+ def process_graph_deplot(image_content):
78
+ """Process a graph image using NVIDIA's Deplot API."""
79
+ invoke_url = "https://ai.api.nvidia.com/v1/vlm/google/deplot"
80
+ image_b64 = get_b64_image_from_content(image_content)
81
+ api_key = os.getenv("NVIDIA_API_KEY")
82
+
83
+ if not api_key:
84
+ raise ValueError("NVIDIA API Key is not set. Please set the NVIDIA_API_KEY environment variable.")
85
+
86
+ headers = {
87
+ "Authorization": f"Bearer {api_key}",
88
+ "Accept": "application/json"
89
+ }
90
+
91
+ payload = {
92
+ "messages": [
93
+ {
94
+ "role": "user",
95
+ "content": f'Generate underlying data table of the figure below: <img src="data:image/png;base64,{image_b64}" />'
96
+ }
97
+ ],
98
+ "max_tokens": 1024,
99
+ "temperature": 0.20,
100
+ "top_p": 0.20,
101
+ "stream": False
102
+ }
103
+
104
+ response = requests.post(invoke_url, headers=headers, json=payload)
105
+ return response.json()["choices"][0]['message']['content']
106
+
107
+ def extract_text_around_item(text_blocks, bbox, page_height, threshold_percentage=0.1):
108
+ """Extract text above and below a given bounding box on a page."""
109
+ before_text, after_text = "", ""
110
+ vertical_threshold_distance = page_height * threshold_percentage
111
+ horizontal_threshold_distance = bbox.width * threshold_percentage
112
+
113
+ for block in text_blocks:
114
+ block_bbox = fitz.Rect(block[:4])
115
+ vertical_distance = min(abs(block_bbox.y1 - bbox.y0), abs(block_bbox.y0 - bbox.y1))
116
+ horizontal_overlap = max(0, min(block_bbox.x1, bbox.x1) - max(block_bbox.x0, bbox.x0))
117
+
118
+ if vertical_distance <= vertical_threshold_distance and horizontal_overlap >= -horizontal_threshold_distance:
119
+ if block_bbox.y1 < bbox.y0 and not before_text:
120
+ before_text = block[4]
121
+ elif block_bbox.y0 > bbox.y1 and not after_text:
122
+ after_text = block[4]
123
+ break
124
+
125
+ return before_text, after_text
126
+
127
+ def process_text_blocks(text_blocks, char_count_threshold=500):
128
+ """Group text blocks based on a character count threshold."""
129
+ current_group = []
130
+ grouped_blocks = []
131
+ current_char_count = 0
132
+
133
+ for block in text_blocks:
134
+ if block[-1] == 0: # Check if the block is of text type
135
+ block_text = block[4]
136
+ block_char_count = len(block_text)
137
+
138
+ if current_char_count + block_char_count <= char_count_threshold:
139
+ current_group.append(block)
140
+ current_char_count += block_char_count
141
+ else:
142
+ if current_group:
143
+ grouped_content = "\n".join([b[4] for b in current_group])
144
+ grouped_blocks.append((current_group[0], grouped_content))
145
+ current_group = [block]
146
+ current_char_count = block_char_count
147
+
148
+ # Append the last group
149
+ if current_group:
150
+ grouped_content = "\n".join([b[4] for b in current_group])
151
+ grouped_blocks.append((current_group[0], grouped_content))
152
+
153
+ return grouped_blocks
154
+
155
+ def save_uploaded_file(uploaded_file):
156
+ """Save an uploaded file to a temporary directory."""
157
+ temp_dir = os.path.join(os.getcwd(), "vectorstore", "ppt_references", "tmp")
158
+ os.makedirs(temp_dir, exist_ok=True)
159
+ temp_file_path = os.path.join(temp_dir, uploaded_file.name)
160
+
161
+ with open(temp_file_path, "wb") as temp_file:
162
+ temp_file.write(uploaded_file.read())
163
+
164
+ return temp_file_path