Spaces:
Build error
Build error
import os | |
from pyChatGPT import ChatGPT | |
os.system("pip install -U gradio") | |
import sys | |
import gradio as gr | |
os.system( | |
"pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu102/torch1.9/index.html" | |
) | |
# clone and install Detic | |
os.system( | |
"git clone https://github.com/facebookresearch/Detic.git --recurse-submodules" | |
) | |
os.chdir("Detic") | |
# Install detectron2 | |
import torch | |
# Some basic setup: | |
# Setup detectron2 logger | |
import detectron2 | |
from detectron2.utils.logger import setup_logger | |
setup_logger() | |
# import some common libraries | |
import sys | |
import numpy as np | |
import os, json, cv2, random | |
# import some common detectron2 utilities | |
from detectron2 import model_zoo | |
from detectron2.engine import DefaultPredictor | |
from detectron2.config import get_cfg | |
from detectron2.utils.visualizer import Visualizer | |
from detectron2.data import MetadataCatalog, DatasetCatalog | |
# Detic libraries | |
sys.path.insert(0, "third_party/CenterNet2/projects/CenterNet2/") | |
sys.path.insert(0, "third_party/CenterNet2/") | |
from centernet.config import add_centernet_config | |
from detic.config import add_detic_config | |
from detic.modeling.utils import reset_cls_test | |
from PIL import Image | |
# Build the detector and download our pretrained weights | |
cfg = get_cfg() | |
add_centernet_config(cfg) | |
add_detic_config(cfg) | |
cfg.MODEL.DEVICE = "cpu" | |
cfg.merge_from_file("configs/Detic_LCOCOI21k_CLIP_SwinB_896b32_4x_ft4x_max-size.yaml") | |
cfg.MODEL.WEIGHTS = "https://dl.fbaipublicfiles.com/detic/Detic_LCOCOI21k_CLIP_SwinB_896b32_4x_ft4x_max-size.pth" | |
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5 # set threshold for this model | |
cfg.MODEL.ROI_BOX_HEAD.ZEROSHOT_WEIGHT_PATH = "rand" | |
cfg.MODEL.ROI_HEADS.ONE_CLASS_PER_PROPOSAL = ( | |
True # For better visualization purpose. Set to False for all classes. | |
) | |
predictor = DefaultPredictor(cfg) | |
# Setup the model's vocabulary using build-in datasets | |
BUILDIN_CLASSIFIER = { | |
"lvis": "datasets/metadata/lvis_v1_clip_a+cname.npy", | |
"objects365": "datasets/metadata/o365_clip_a+cnamefix.npy", | |
"openimages": "datasets/metadata/oid_clip_a+cname.npy", | |
"coco": "datasets/metadata/coco_clip_a+cname.npy", | |
} | |
BUILDIN_METADATA_PATH = { | |
"lvis": "lvis_v1_val", | |
"objects365": "objects365_v2_val", | |
"openimages": "oid_val_expanded", | |
"coco": "coco_2017_val", | |
} | |
vocabulary = "lvis" # change to 'lvis', 'objects365', 'openimages', or 'coco' | |
metadata = MetadataCatalog.get(BUILDIN_METADATA_PATH[vocabulary]) | |
classifier = BUILDIN_CLASSIFIER[vocabulary] | |
num_classes = len(metadata.thing_classes) | |
reset_cls_test(predictor.model, classifier, num_classes) | |
def inference(img,unique_only): | |
im = cv2.imread(img) | |
outputs = predictor(im) | |
v = Visualizer(im[:, :, ::-1], metadata) | |
out = v.draw_instance_predictions(outputs["instances"].to("cpu")) | |
detected_objects = [] | |
object_list_str = [] | |
box_locations = outputs["instances"].pred_boxes | |
box_loc_screen = box_locations.tensor.cpu().numpy() | |
unique_object_dict = {} | |
for i, box_coord in enumerate(box_loc_screen): | |
x0, y0, x1, y1 = box_coord | |
width = x1 - x0 | |
height = y1 - y0 | |
predicted_label = metadata.thing_classes[outputs["instances"].pred_classes[i]] | |
detected_objects.append( | |
{ | |
"prediction": predicted_label, | |
"x": int(x0), | |
"y": int(y0), | |
"w": int(width), | |
"h": int(height), | |
} | |
) | |
if ((not unique_only) or (unique_only and predicted_label not in unique_object_dict)): | |
object_list_str.append( | |
f"{predicted_label} - X:{int(x0)} Y: {int(y0)} Width: {int(width)} Height: {int(height)}" | |
) | |
unique_object_dict[predicted_label] = 1 | |
output_str = "Imagine you are a blind but intelligent image captioner who is only given the X,Y coordinates and width, height of each object in a scene with no specific attributes of the objects themselves. Create a description of the scene using the relative positions and sizes of objects\n" | |
for line in object_list_str: | |
output_str += line + "\n" | |
return ( | |
Image.fromarray(np.uint8(out.get_image())).convert("RGB"), | |
output_str | |
) | |
with gr.Blocks() as demo: | |
gr.Markdown("<div style=\"font-size:22; color: #2f2f2f; text-align: center\"><b>Detic for ChatGPT</b></div> <i>") | |
gr.Markdown("<div style=\"font-size:12; color: #6f6f6f; text-align: center\"><i>A duplicated tweak of <a href=\"https://huggingface.co/spaces/taesiri/DeticChatGPT\">taesiri's Dectic/ChatGPT demo</a></i>") | |
gr.Markdown("Use Detic to detect objects in an image and then copy/paste output text into your ChatGPT playground.") | |
with gr.Column(): | |
inp = gr.Image(label="Input Image", type="filepath") | |
chk = gr.Checkbox(label="Unique Objects only? (useful to reduce ChatGPT input to speed up its reponse and also eliminate timeouts") | |
btn_detic = gr.Button("Run Detic for ChatGPT") | |
with gr.Column(): | |
outviz = gr.Image(label="Visualization", type="pil") | |
output_desc = gr.Textbox(label="Description for using in ChatGPT", lines=5) | |
# outputjson = gr.JSON(label="Detected Objects") | |
btn_detic.click(fn=inference, inputs=[inp,chk], outputs=[outviz, output_desc]) | |
demo.launch() | |