Spaces:
Runtime error
Runtime error
from transformers import AutoModel, AutoTokenizer | |
from transformers import AutoModelForCausalLM | |
from scipy.spatial.distance import cosine | |
import argparse | |
import json | |
import pdb | |
import torch | |
import torch.nn.functional as F | |
def read_text(input_file): | |
arr = open(input_file).read().split("\n") | |
return arr[:-1] | |
class CausalLMModel: | |
def __init__(self): | |
self.model = None | |
self.tokenizer = None | |
self.debug = False | |
print("In CausalLMModel Constructor") | |
def init_model(self,model_name = None): | |
# Get our models - The package will take care of downloading the models automatically | |
# For best performance: Muennighoff/SGPT-5.8B-weightedmean-nli-bitfit | |
if (self.debug): | |
print("Init model",model_name) | |
# For best performance: EleutherAI/gpt-j-6B | |
if (model_name is None): | |
model_name = "EleutherAI/gpt-neo-125M" | |
self.tokenizer = AutoTokenizer.from_pretrained(model_name) | |
self.model = AutoModelForCausalLM.from_pretrained(model_name) | |
self.model.eval() | |
self.prompt = 'Documents are searched to find matches with the same content.\nThe document "{}" is a good search result for "' | |
def compute_embeddings(self,input_data,is_file): | |
if (self.debug): | |
print("Computing embeddings for:", input_data[:20]) | |
model = self.model | |
tokenizer = self.tokenizer | |
texts = read_text(input_data) if is_file == True else input_data | |
query = texts[0] | |
docs = texts[1:] | |
# Tokenize input texts | |
#print(f"Query: {query}") | |
scores = [] | |
for doc in docs: | |
context = self.prompt.format(doc) | |
context_enc = tokenizer.encode(context, add_special_tokens=False) | |
continuation_enc = tokenizer.encode(query, add_special_tokens=False) | |
# Slice off the last token, as we take its probability from the one before | |
model_input = torch.tensor(context_enc+continuation_enc[:-1]) | |
continuation_len = len(continuation_enc) | |
input_len, = model_input.shape | |
# [seq_len] -> [seq_len, vocab] | |
logprobs = torch.nn.functional.log_softmax(model(model_input)[0], dim=-1).cpu() | |
# [seq_len, vocab] -> [continuation_len, vocab] | |
logprobs = logprobs[input_len-continuation_len:] | |
# Gather the log probabilities of the continuation tokens -> [continuation_len] | |
logprobs = torch.gather(logprobs, 1, torch.tensor(continuation_enc).unsqueeze(-1)).squeeze(-1) | |
score = torch.sum(logprobs) | |
scores.append(score.tolist()) | |
return texts,scores | |
def output_results(self,output_file,texts,scores,main_index = 0): | |
cosine_dict = {} | |
docs = texts[1:] | |
if (self.debug): | |
print("Total sentences",len(texts)) | |
assert(len(scores) == len(docs)) | |
for i in range(len(docs)): | |
cosine_dict[docs[i]] = scores[i] | |
if (self.debug): | |
print("Input sentence:",texts[main_index]) | |
sorted_dict = dict(sorted(cosine_dict.items(), key=lambda item: item[1],reverse = True)) | |
if (self.debug): | |
for key in sorted_dict: | |
print("Document score for \"%s\" is: %.3f" % (key[:100], sorted_dict[key])) | |
if (output_file is not None): | |
with open(output_file,"w") as fp: | |
fp.write(json.dumps(sorted_dict,indent=0)) | |
return sorted_dict | |
class SGPTQnAModel: | |
def __init__(self): | |
self.model = None | |
self.tokenizer = None | |
self.debug = False | |
print("In SGPT Q&A Constructor") | |
def init_model(self,model_name = None): | |
# Get our models - The package will take care of downloading the models automatically | |
# For best performance: Muennighoff/SGPT-5.8B-weightedmean-nli-bitfit | |
if (self.debug): | |
print("Init model",model_name) | |
if (model_name is None): | |
model_name = "Muennighoff/SGPT-125M-weightedmean-msmarco-specb-bitfit" | |
self.tokenizer = AutoTokenizer.from_pretrained(model_name) | |
self.model = AutoModel.from_pretrained(model_name) | |
self.model.eval() | |
self.SPECB_QUE_BOS = self.tokenizer.encode("[", add_special_tokens=False)[0] | |
self.SPECB_QUE_EOS = self.tokenizer.encode("]", add_special_tokens=False)[0] | |
self.SPECB_DOC_BOS = self.tokenizer.encode("{", add_special_tokens=False)[0] | |
self.SPECB_DOC_EOS = self.tokenizer.encode("}", add_special_tokens=False)[0] | |
def tokenize_with_specb(self,texts, is_query): | |
# Tokenize without padding | |
batch_tokens = self.tokenizer(texts, padding=False, truncation=True) | |
# Add special brackets & pay attention to them | |
for seq, att in zip(batch_tokens["input_ids"], batch_tokens["attention_mask"]): | |
if is_query: | |
seq.insert(0, self.SPECB_QUE_BOS) | |
seq.append(self.SPECB_QUE_EOS) | |
else: | |
seq.insert(0, self.SPECB_DOC_BOS) | |
seq.append(self.SPECB_DOC_EOS) | |
att.insert(0, 1) | |
att.append(1) | |
# Add padding | |
batch_tokens = self.tokenizer.pad(batch_tokens, padding=True, return_tensors="pt") | |
return batch_tokens | |
def get_weightedmean_embedding(self,batch_tokens, model): | |
# Get the embeddings | |
with torch.no_grad(): | |
# Get hidden state of shape [bs, seq_len, hid_dim] | |
last_hidden_state = self.model(**batch_tokens, output_hidden_states=True, return_dict=True).last_hidden_state | |
# Get weights of shape [bs, seq_len, hid_dim] | |
weights = ( | |
torch.arange(start=1, end=last_hidden_state.shape[1] + 1) | |
.unsqueeze(0) | |
.unsqueeze(-1) | |
.expand(last_hidden_state.size()) | |
.float().to(last_hidden_state.device) | |
) | |
# Get attn mask of shape [bs, seq_len, hid_dim] | |
input_mask_expanded = ( | |
batch_tokens["attention_mask"] | |
.unsqueeze(-1) | |
.expand(last_hidden_state.size()) | |
.float() | |
) | |
# Perform weighted mean pooling across seq_len: bs, seq_len, hidden_dim -> bs, hidden_dim | |
sum_embeddings = torch.sum(last_hidden_state * input_mask_expanded * weights, dim=1) | |
sum_mask = torch.sum(input_mask_expanded * weights, dim=1) | |
embeddings = sum_embeddings / sum_mask | |
return embeddings | |
def compute_embeddings(self,input_data,is_file): | |
if (self.debug): | |
print("Computing embeddings for:", input_data[:20]) | |
model = self.model | |
tokenizer = self.tokenizer | |
texts = read_text(input_data) if is_file == True else input_data | |
queries = [texts[0]] | |
docs = texts[1:] | |
query_embeddings = self.get_weightedmean_embedding(self.tokenize_with_specb(queries, is_query=True), self.model) | |
doc_embeddings = self.get_weightedmean_embedding(self.tokenize_with_specb(docs, is_query=False), self.model) | |
return texts,(query_embeddings,doc_embeddings) | |
def output_results(self,output_file,texts,embeddings,main_index = 0): | |
# Calculate cosine similarities | |
# Cosine similarities are in [-1, 1]. Higher means more similar | |
query_embeddings = embeddings[0] | |
doc_embeddings = embeddings[1] | |
cosine_dict = {} | |
queries = [texts[0]] | |
docs = texts[1:] | |
if (self.debug): | |
print("Total sentences",len(texts)) | |
for i in range(len(docs)): | |
cosine_dict[docs[i]] = 1 - cosine(query_embeddings[0], doc_embeddings[i]) | |
if (self.debug): | |
print("Input sentence:",texts[main_index]) | |
sorted_dict = dict(sorted(cosine_dict.items(), key=lambda item: item[1],reverse = True)) | |
if (self.debug): | |
for key in sorted_dict: | |
print("Cosine similarity with \"%s\" is: %.3f" % (key, sorted_dict[key])) | |
if (output_file is not None): | |
with open(output_file,"w") as fp: | |
fp.write(json.dumps(sorted_dict,indent=0)) | |
return sorted_dict | |
class SimCSEModel: | |
def __init__(self): | |
self.model = None | |
self.tokenizer = None | |
self.debug = False | |
print("In SimCSE constructor") | |
def init_model(self,model_name = None): | |
if (model_name == None): | |
model_name = "princeton-nlp/sup-simcse-roberta-large" | |
#self.model = SimCSE(model_name) | |
self.tokenizer = AutoTokenizer.from_pretrained(model_name) | |
self.model = AutoModel.from_pretrained(model_name) | |
def compute_embeddings(self,input_data,is_file): | |
texts = read_text(input_data) if is_file == True else input_data | |
inputs = self.tokenizer(texts, padding=True, truncation=True, return_tensors="pt") | |
with torch.no_grad(): | |
embeddings = self.model(**inputs, output_hidden_states=True, return_dict=True).pooler_output | |
return texts,embeddings | |
def output_results(self,output_file,texts,embeddings,main_index = 0): | |
# Calculate cosine similarities | |
# Cosine similarities are in [-1, 1]. Higher means more similar | |
cosine_dict = {} | |
#print("Total sentences",len(texts)) | |
for i in range(len(texts)): | |
cosine_dict[texts[i]] = 1 - cosine(embeddings[main_index], embeddings[i]) | |
#print("Input sentence:",texts[main_index]) | |
sorted_dict = dict(sorted(cosine_dict.items(), key=lambda item: item[1],reverse = True)) | |
if (self.debug): | |
for key in sorted_dict: | |
print("Cosine similarity with \"%s\" is: %.3f" % (key, sorted_dict[key])) | |
if (output_file is not None): | |
with open(output_file,"w") as fp: | |
fp.write(json.dumps(sorted_dict,indent=0)) | |
return sorted_dict | |
class SGPTModel: | |
def __init__(self): | |
self.model = None | |
self.tokenizer = None | |
self.debug = False | |
print("In SGPT Constructor") | |
def init_model(self,model_name = None): | |
# Get our models - The package will take care of downloading the models automatically | |
# For best performance: Muennighoff/SGPT-5.8B-weightedmean-nli-bitfit | |
if (self.debug): | |
print("Init model",model_name) | |
if (model_name is None): | |
model_name = "Muennighoff/SGPT-125M-weightedmean-nli-bitfit" | |
self.tokenizer = AutoTokenizer.from_pretrained(model_name) | |
self.model = AutoModel.from_pretrained(model_name) | |
#self.tokenizer = AutoTokenizer.from_pretrained("Muennighoff/SGPT-1.3B-weightedmean-msmarco-specb-bitfit") | |
#self.model = AutoModel.from_pretrained("Muennighoff/SGPT-1.3B-weightedmean-msmarco-specb-bitfit") | |
#self.tokenizer = AutoTokenizer.from_pretrained("Muennighoff/SGPT-5.8B-weightedmean-msmarco-specb-bitfit") | |
#self.model = AutoModel.from_pretrained("Muennighoff/SGPT-5.8B-weightedmean-msmarco-specb-bitfit") | |
# Deactivate Dropout (There is no dropout in the above models so it makes no difference here but other SGPT models may have dropout) | |
self.model.eval() | |
def compute_embeddings(self,input_data,is_file): | |
if (self.debug): | |
print("Computing embeddings for:", input_data[:20]) | |
model = self.model | |
tokenizer = self.tokenizer | |
texts = read_text(input_data) if is_file == True else input_data | |
# Tokenize input texts | |
batch_tokens = tokenizer(texts, padding=True, truncation=True, return_tensors="pt") | |
# Get the embeddings | |
with torch.no_grad(): | |
# Get hidden state of shape [bs, seq_len, hid_dim] | |
last_hidden_state = model(**batch_tokens, output_hidden_states=True, return_dict=True).last_hidden_state | |
# Get weights of shape [bs, seq_len, hid_dim] | |
weights = ( | |
torch.arange(start=1, end=last_hidden_state.shape[1] + 1) | |
.unsqueeze(0) | |
.unsqueeze(-1) | |
.expand(last_hidden_state.size()) | |
.float().to(last_hidden_state.device) | |
) | |
# Get attn mask of shape [bs, seq_len, hid_dim] | |
input_mask_expanded = ( | |
batch_tokens["attention_mask"] | |
.unsqueeze(-1) | |
.expand(last_hidden_state.size()) | |
.float() | |
) | |
# Perform weighted mean pooling across seq_len: bs, seq_len, hidden_dim -> bs, hidden_dim | |
sum_embeddings = torch.sum(last_hidden_state * input_mask_expanded * weights, dim=1) | |
sum_mask = torch.sum(input_mask_expanded * weights, dim=1) | |
embeddings = sum_embeddings / sum_mask | |
return texts,embeddings | |
def output_results(self,output_file,texts,embeddings,main_index = 0): | |
# Calculate cosine similarities | |
# Cosine similarities are in [-1, 1]. Higher means more similar | |
cosine_dict = {} | |
if (self.debug): | |
print("Total sentences",len(texts)) | |
for i in range(len(texts)): | |
cosine_dict[texts[i]] = 1 - cosine(embeddings[main_index], embeddings[i]) | |
if (self.debug): | |
print("Input sentence:",texts[main_index]) | |
sorted_dict = dict(sorted(cosine_dict.items(), key=lambda item: item[1],reverse = True)) | |
if (self.debug): | |
for key in sorted_dict: | |
print("Cosine similarity with \"%s\" is: %.3f" % (key, sorted_dict[key])) | |
if (output_file is not None): | |
with open(output_file,"w") as fp: | |
fp.write(json.dumps(sorted_dict,indent=0)) | |
return sorted_dict | |
class HFModel: | |
def __init__(self): | |
self.model = None | |
self.tokenizer = None | |
self.debug = False | |
print("In HF Constructor") | |
def init_model(self,model_name = None): | |
# Get our models - The package will take care of downloading the models automatically | |
# For best performance: Muennighoff/SGPT-5.8B-weightedmean-nli-bitfit | |
#print("Init model",model_name) | |
if (model_name is None): | |
model_name = "sentence-transformers/all-MiniLM-L6-v2" | |
self.tokenizer = AutoTokenizer.from_pretrained(model_name) | |
self.model = AutoModel.from_pretrained(model_name) | |
self.model.eval() | |
def mean_pooling(self,model_output, attention_mask): | |
token_embeddings = model_output[0] #First element of model_output contains all token embeddings | |
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() | |
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) | |
def compute_embeddings(self,input_data,is_file): | |
#print("Computing embeddings for:", input_data[:20]) | |
model = self.model | |
tokenizer = self.tokenizer | |
texts = read_text(input_data) if is_file == True else input_data | |
encoded_input = tokenizer(texts, padding=True, truncation=True, return_tensors='pt') | |
# Compute token embeddings | |
with torch.no_grad(): | |
model_output = model(**encoded_input) | |
# Perform pooling | |
sentence_embeddings = self.mean_pooling(model_output, encoded_input['attention_mask']) | |
# Normalize embeddings | |
sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1) | |
return texts,sentence_embeddings | |
def output_results(self,output_file,texts,embeddings,main_index = 0): | |
# Calculate cosine similarities | |
# Cosine similarities are in [-1, 1]. Higher means more similar | |
cosine_dict = {} | |
#print("Total sentences",len(texts)) | |
for i in range(len(texts)): | |
cosine_dict[texts[i]] = 1 - cosine(embeddings[main_index], embeddings[i]) | |
#print("Input sentence:",texts[main_index]) | |
sorted_dict = dict(sorted(cosine_dict.items(), key=lambda item: item[1],reverse = True)) | |
if (self.debug): | |
for key in sorted_dict: | |
print("Cosine similarity with \"%s\" is: %.3f" % (key, sorted_dict[key])) | |
if (output_file is not None): | |
with open(output_file,"w") as fp: | |
fp.write(json.dumps(sorted_dict,indent=0)) | |
return sorted_dict | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser(description='SGPT model for sentence embeddings ',formatter_class=argparse.ArgumentDefaultsHelpFormatter) | |
parser.add_argument('-input', action="store", dest="input",required=True,help="Input file with sentences") | |
parser.add_argument('-output', action="store", dest="output",default="output.txt",help="Output file with results") | |
parser.add_argument('-model', action="store", dest="model",default="sentence-transformers/all-MiniLM-L6-v2",help="model name") | |
results = parser.parse_args() | |
obj = HFModel() | |
obj.init_model(results.model) | |
texts, embeddings = obj.compute_embeddings(results.input,is_file = True) | |
results = obj.output_results(results.output,texts,embeddings) | |