semantic_similarity / twc_embeddings.py
taskswithcode
Fixes
02d9efc
raw
history blame
17.1 kB
from transformers import AutoModel, AutoTokenizer
from transformers import AutoModelForCausalLM
from scipy.spatial.distance import cosine
import argparse
import json
import pdb
import torch
import torch.nn.functional as F
def read_text(input_file):
arr = open(input_file).read().split("\n")
return arr[:-1]
class CausalLMModel:
def __init__(self):
self.model = None
self.tokenizer = None
self.debug = False
print("In CausalLMModel Constructor")
def init_model(self,model_name = None):
# Get our models - The package will take care of downloading the models automatically
# For best performance: Muennighoff/SGPT-5.8B-weightedmean-nli-bitfit
if (self.debug):
print("Init model",model_name)
# For best performance: EleutherAI/gpt-j-6B
if (model_name is None):
model_name = "EleutherAI/gpt-neo-125M"
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModelForCausalLM.from_pretrained(model_name)
self.model.eval()
self.prompt = 'Documents are searched to find matches with the same content.\nThe document "{}" is a good search result for "'
def compute_embeddings(self,input_file_name,input_data,is_file):
if (self.debug):
print("Computing embeddings for:", input_data[:20])
model = self.model
tokenizer = self.tokenizer
texts = read_text(input_data) if is_file == True else input_data
query = texts[0]
docs = texts[1:]
# Tokenize input texts
#print(f"Query: {query}")
scores = []
for doc in docs:
context = self.prompt.format(doc)
context_enc = tokenizer.encode(context, add_special_tokens=False)
continuation_enc = tokenizer.encode(query, add_special_tokens=False)
# Slice off the last token, as we take its probability from the one before
model_input = torch.tensor(context_enc+continuation_enc[:-1])
continuation_len = len(continuation_enc)
input_len, = model_input.shape
# [seq_len] -> [seq_len, vocab]
logprobs = torch.nn.functional.log_softmax(model(model_input)[0], dim=-1).cpu()
# [seq_len, vocab] -> [continuation_len, vocab]
logprobs = logprobs[input_len-continuation_len:]
# Gather the log probabilities of the continuation tokens -> [continuation_len]
logprobs = torch.gather(logprobs, 1, torch.tensor(continuation_enc).unsqueeze(-1)).squeeze(-1)
score = torch.sum(logprobs)
scores.append(score.tolist())
return texts,scores
def output_results(self,output_file,texts,scores,main_index = 0):
cosine_dict = {}
docs = texts[1:]
if (self.debug):
print("Total sentences",len(texts))
assert(len(scores) == len(docs))
for i in range(len(docs)):
cosine_dict[docs[i]] = scores[i]
if (self.debug):
print("Input sentence:",texts[main_index])
sorted_dict = dict(sorted(cosine_dict.items(), key=lambda item: item[1],reverse = True))
if (self.debug):
for key in sorted_dict:
print("Document score for \"%s\" is: %.3f" % (key[:100], sorted_dict[key]))
if (output_file is not None):
with open(output_file,"w") as fp:
fp.write(json.dumps(sorted_dict,indent=0))
return sorted_dict
class SGPTQnAModel:
def __init__(self):
self.model = None
self.tokenizer = None
self.debug = False
print("In SGPT Q&A Constructor")
def init_model(self,model_name = None):
# Get our models - The package will take care of downloading the models automatically
# For best performance: Muennighoff/SGPT-5.8B-weightedmean-nli-bitfit
if (self.debug):
print("Init model",model_name)
if (model_name is None):
model_name = "Muennighoff/SGPT-125M-weightedmean-msmarco-specb-bitfit"
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModel.from_pretrained(model_name)
self.model.eval()
self.SPECB_QUE_BOS = self.tokenizer.encode("[", add_special_tokens=False)[0]
self.SPECB_QUE_EOS = self.tokenizer.encode("]", add_special_tokens=False)[0]
self.SPECB_DOC_BOS = self.tokenizer.encode("{", add_special_tokens=False)[0]
self.SPECB_DOC_EOS = self.tokenizer.encode("}", add_special_tokens=False)[0]
def tokenize_with_specb(self,texts, is_query):
# Tokenize without padding
batch_tokens = self.tokenizer(texts, padding=False, truncation=True)
# Add special brackets & pay attention to them
for seq, att in zip(batch_tokens["input_ids"], batch_tokens["attention_mask"]):
if is_query:
seq.insert(0, self.SPECB_QUE_BOS)
seq.append(self.SPECB_QUE_EOS)
else:
seq.insert(0, self.SPECB_DOC_BOS)
seq.append(self.SPECB_DOC_EOS)
att.insert(0, 1)
att.append(1)
# Add padding
batch_tokens = self.tokenizer.pad(batch_tokens, padding=True, return_tensors="pt")
return batch_tokens
def get_weightedmean_embedding(self,batch_tokens, model):
# Get the embeddings
with torch.no_grad():
# Get hidden state of shape [bs, seq_len, hid_dim]
last_hidden_state = self.model(**batch_tokens, output_hidden_states=True, return_dict=True).last_hidden_state
# Get weights of shape [bs, seq_len, hid_dim]
weights = (
torch.arange(start=1, end=last_hidden_state.shape[1] + 1)
.unsqueeze(0)
.unsqueeze(-1)
.expand(last_hidden_state.size())
.float().to(last_hidden_state.device)
)
# Get attn mask of shape [bs, seq_len, hid_dim]
input_mask_expanded = (
batch_tokens["attention_mask"]
.unsqueeze(-1)
.expand(last_hidden_state.size())
.float()
)
# Perform weighted mean pooling across seq_len: bs, seq_len, hidden_dim -> bs, hidden_dim
sum_embeddings = torch.sum(last_hidden_state * input_mask_expanded * weights, dim=1)
sum_mask = torch.sum(input_mask_expanded * weights, dim=1)
embeddings = sum_embeddings / sum_mask
return embeddings
def compute_embeddings(self,input_file_name,input_data,is_file):
if (self.debug):
print("Computing embeddings for:", input_data[:20])
model = self.model
tokenizer = self.tokenizer
texts = read_text(input_data) if is_file == True else input_data
queries = [texts[0]]
docs = texts[1:]
query_embeddings = self.get_weightedmean_embedding(self.tokenize_with_specb(queries, is_query=True), self.model)
doc_embeddings = self.get_weightedmean_embedding(self.tokenize_with_specb(docs, is_query=False), self.model)
return texts,(query_embeddings,doc_embeddings)
def output_results(self,output_file,texts,embeddings,main_index = 0):
# Calculate cosine similarities
# Cosine similarities are in [-1, 1]. Higher means more similar
query_embeddings = embeddings[0]
doc_embeddings = embeddings[1]
cosine_dict = {}
queries = [texts[0]]
docs = texts[1:]
if (self.debug):
print("Total sentences",len(texts))
for i in range(len(docs)):
cosine_dict[docs[i]] = 1 - cosine(query_embeddings[0], doc_embeddings[i])
if (self.debug):
print("Input sentence:",texts[main_index])
sorted_dict = dict(sorted(cosine_dict.items(), key=lambda item: item[1],reverse = True))
if (self.debug):
for key in sorted_dict:
print("Cosine similarity with \"%s\" is: %.3f" % (key, sorted_dict[key]))
if (output_file is not None):
with open(output_file,"w") as fp:
fp.write(json.dumps(sorted_dict,indent=0))
return sorted_dict
class SimCSEModel:
def __init__(self):
self.model = None
self.tokenizer = None
self.debug = False
print("In SimCSE constructor")
def init_model(self,model_name = None):
if (model_name == None):
model_name = "princeton-nlp/sup-simcse-roberta-large"
#self.model = SimCSE(model_name)
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModel.from_pretrained(model_name)
def compute_embeddings(self,input_file_name,input_data,is_file):
texts = read_text(input_data) if is_file == True else input_data
inputs = self.tokenizer(texts, padding=True, truncation=True, return_tensors="pt")
with torch.no_grad():
embeddings = self.model(**inputs, output_hidden_states=True, return_dict=True).pooler_output
return texts,embeddings
def output_results(self,output_file,texts,embeddings,main_index = 0):
# Calculate cosine similarities
# Cosine similarities are in [-1, 1]. Higher means more similar
cosine_dict = {}
#print("Total sentences",len(texts))
for i in range(len(texts)):
cosine_dict[texts[i]] = 1 - cosine(embeddings[main_index], embeddings[i])
#print("Input sentence:",texts[main_index])
sorted_dict = dict(sorted(cosine_dict.items(), key=lambda item: item[1],reverse = True))
if (self.debug):
for key in sorted_dict:
print("Cosine similarity with \"%s\" is: %.3f" % (key, sorted_dict[key]))
if (output_file is not None):
with open(output_file,"w") as fp:
fp.write(json.dumps(sorted_dict,indent=0))
return sorted_dict
class SGPTModel:
def __init__(self):
self.model = None
self.tokenizer = None
self.debug = False
print("In SGPT Constructor")
def init_model(self,model_name = None):
# Get our models - The package will take care of downloading the models automatically
# For best performance: Muennighoff/SGPT-5.8B-weightedmean-nli-bitfit
if (self.debug):
print("Init model",model_name)
if (model_name is None):
model_name = "Muennighoff/SGPT-125M-weightedmean-nli-bitfit"
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModel.from_pretrained(model_name)
#self.tokenizer = AutoTokenizer.from_pretrained("Muennighoff/SGPT-1.3B-weightedmean-msmarco-specb-bitfit")
#self.model = AutoModel.from_pretrained("Muennighoff/SGPT-1.3B-weightedmean-msmarco-specb-bitfit")
#self.tokenizer = AutoTokenizer.from_pretrained("Muennighoff/SGPT-5.8B-weightedmean-msmarco-specb-bitfit")
#self.model = AutoModel.from_pretrained("Muennighoff/SGPT-5.8B-weightedmean-msmarco-specb-bitfit")
# Deactivate Dropout (There is no dropout in the above models so it makes no difference here but other SGPT models may have dropout)
self.model.eval()
def compute_embeddings(self,input_file_name,input_data,is_file):
if (self.debug):
print("Computing embeddings for:", input_data[:20])
model = self.model
tokenizer = self.tokenizer
texts = read_text(input_data) if is_file == True else input_data
# Tokenize input texts
batch_tokens = tokenizer(texts, padding=True, truncation=True, return_tensors="pt")
# Get the embeddings
with torch.no_grad():
# Get hidden state of shape [bs, seq_len, hid_dim]
last_hidden_state = model(**batch_tokens, output_hidden_states=True, return_dict=True).last_hidden_state
# Get weights of shape [bs, seq_len, hid_dim]
weights = (
torch.arange(start=1, end=last_hidden_state.shape[1] + 1)
.unsqueeze(0)
.unsqueeze(-1)
.expand(last_hidden_state.size())
.float().to(last_hidden_state.device)
)
# Get attn mask of shape [bs, seq_len, hid_dim]
input_mask_expanded = (
batch_tokens["attention_mask"]
.unsqueeze(-1)
.expand(last_hidden_state.size())
.float()
)
# Perform weighted mean pooling across seq_len: bs, seq_len, hidden_dim -> bs, hidden_dim
sum_embeddings = torch.sum(last_hidden_state * input_mask_expanded * weights, dim=1)
sum_mask = torch.sum(input_mask_expanded * weights, dim=1)
embeddings = sum_embeddings / sum_mask
return texts,embeddings
def output_results(self,output_file,texts,embeddings,main_index = 0):
# Calculate cosine similarities
# Cosine similarities are in [-1, 1]. Higher means more similar
cosine_dict = {}
if (self.debug):
print("Total sentences",len(texts))
for i in range(len(texts)):
cosine_dict[texts[i]] = 1 - cosine(embeddings[main_index], embeddings[i])
if (self.debug):
print("Input sentence:",texts[main_index])
sorted_dict = dict(sorted(cosine_dict.items(), key=lambda item: item[1],reverse = True))
if (self.debug):
for key in sorted_dict:
print("Cosine similarity with \"%s\" is: %.3f" % (key, sorted_dict[key]))
if (output_file is not None):
with open(output_file,"w") as fp:
fp.write(json.dumps(sorted_dict,indent=0))
return sorted_dict
class HFModel:
def __init__(self):
self.model = None
self.tokenizer = None
self.debug = False
print("In HF Constructor")
def init_model(self,model_name = None):
# Get our models - The package will take care of downloading the models automatically
# For best performance: Muennighoff/SGPT-5.8B-weightedmean-nli-bitfit
#print("Init model",model_name)
if (model_name is None):
model_name = "sentence-transformers/all-MiniLM-L6-v2"
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModel.from_pretrained(model_name)
self.model.eval()
def mean_pooling(self,model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
def compute_embeddings(self,input_file_name,input_data,is_file):
#print("Computing embeddings for:", input_data[:20])
model = self.model
tokenizer = self.tokenizer
texts = read_text(input_data) if is_file == True else input_data
encoded_input = tokenizer(texts, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling
sentence_embeddings = self.mean_pooling(model_output, encoded_input['attention_mask'])
# Normalize embeddings
sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
return texts,sentence_embeddings
def output_results(self,output_file,texts,embeddings,main_index = 0):
# Calculate cosine similarities
# Cosine similarities are in [-1, 1]. Higher means more similar
cosine_dict = {}
#print("Total sentences",len(texts))
for i in range(len(texts)):
cosine_dict[texts[i]] = 1 - cosine(embeddings[main_index], embeddings[i])
#print("Input sentence:",texts[main_index])
sorted_dict = dict(sorted(cosine_dict.items(), key=lambda item: item[1],reverse = True))
if (self.debug):
for key in sorted_dict:
print("Cosine similarity with \"%s\" is: %.3f" % (key, sorted_dict[key]))
if (output_file is not None):
with open(output_file,"w") as fp:
fp.write(json.dumps(sorted_dict,indent=0))
return sorted_dict
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='SGPT model for sentence embeddings ',formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('-input', action="store", dest="input",required=True,help="Input file with sentences")
parser.add_argument('-output', action="store", dest="output",default="output.txt",help="Output file with results")
parser.add_argument('-model', action="store", dest="model",default="sentence-transformers/all-MiniLM-L6-v2",help="model name")
results = parser.parse_args()
obj = HFModel()
obj.init_model(results.model)
texts, embeddings = obj.compute_embeddings(results.input,results.input,is_file = True)
results = obj.output_results(results.output,texts,embeddings)