Spaces:
Runtime error
Runtime error
taskswithcode
commited on
Commit
·
5b36a6d
1
Parent(s):
b36de05
Upload twc_embeddings.py
Browse files- twc_embeddings.py +217 -0
twc_embeddings.py
ADDED
@@ -0,0 +1,217 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoModel, AutoTokenizer
|
2 |
+
from scipy.spatial.distance import cosine
|
3 |
+
import argparse
|
4 |
+
import json
|
5 |
+
import pdb
|
6 |
+
import torch
|
7 |
+
import torch.nn.functional as F
|
8 |
+
|
9 |
+
def read_text(input_file):
|
10 |
+
arr = open(input_file).read().split("\n")
|
11 |
+
return arr[:-1]
|
12 |
+
|
13 |
+
|
14 |
+
class SimCSEModel:
|
15 |
+
def __init__(self):
|
16 |
+
self.model = None
|
17 |
+
self.tokenizer = None
|
18 |
+
self.debug = False
|
19 |
+
print("In SimCSE constructor")
|
20 |
+
|
21 |
+
def init_model(self,model_name = None):
|
22 |
+
if (model_name == None):
|
23 |
+
model_name = "princeton-nlp/sup-simcse-roberta-large"
|
24 |
+
#self.model = SimCSE(model_name)
|
25 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
26 |
+
self.model = AutoModel.from_pretrained(model_name)
|
27 |
+
|
28 |
+
def compute_embeddings(self,input_data,is_file):
|
29 |
+
texts = read_text(input_data) if is_file == True else input_data
|
30 |
+
inputs = self.tokenizer(texts, padding=True, truncation=True, return_tensors="pt")
|
31 |
+
with torch.no_grad():
|
32 |
+
embeddings = self.model(**inputs, output_hidden_states=True, return_dict=True).pooler_output
|
33 |
+
return texts,embeddings
|
34 |
+
|
35 |
+
def output_results(self,output_file,texts,embeddings,main_index = 0):
|
36 |
+
# Calculate cosine similarities
|
37 |
+
# Cosine similarities are in [-1, 1]. Higher means more similar
|
38 |
+
cosine_dict = {}
|
39 |
+
#print("Total sentences",len(texts))
|
40 |
+
for i in range(len(texts)):
|
41 |
+
cosine_dict[texts[i]] = 1 - cosine(embeddings[main_index], embeddings[i])
|
42 |
+
|
43 |
+
#print("Input sentence:",texts[main_index])
|
44 |
+
sorted_dict = dict(sorted(cosine_dict.items(), key=lambda item: item[1],reverse = True))
|
45 |
+
if (self.debug):
|
46 |
+
for key in sorted_dict:
|
47 |
+
print("Cosine similarity with \"%s\" is: %.3f" % (key, sorted_dict[key]))
|
48 |
+
if (output_file is not None):
|
49 |
+
with open(output_file,"w") as fp:
|
50 |
+
fp.write(json.dumps(sorted_dict,indent=0))
|
51 |
+
return sorted_dict
|
52 |
+
|
53 |
+
|
54 |
+
|
55 |
+
class SGPTModel:
|
56 |
+
def __init__(self):
|
57 |
+
self.model = None
|
58 |
+
self.tokenizer = None
|
59 |
+
self.debug = False
|
60 |
+
print("In SGPT Constructor")
|
61 |
+
|
62 |
+
|
63 |
+
def init_model(self,model_name = None):
|
64 |
+
# Get our models - The package will take care of downloading the models automatically
|
65 |
+
# For best performance: Muennighoff/SGPT-5.8B-weightedmean-nli-bitfit
|
66 |
+
if (self.debug):
|
67 |
+
print("Init model",model_name)
|
68 |
+
if (model_name is None):
|
69 |
+
model_name = "Muennighoff/SGPT-125M-weightedmean-nli-bitfit"
|
70 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
71 |
+
self.model = AutoModel.from_pretrained(model_name)
|
72 |
+
#self.tokenizer = AutoTokenizer.from_pretrained("Muennighoff/SGPT-1.3B-weightedmean-msmarco-specb-bitfit")
|
73 |
+
#self.model = AutoModel.from_pretrained("Muennighoff/SGPT-1.3B-weightedmean-msmarco-specb-bitfit")
|
74 |
+
#self.tokenizer = AutoTokenizer.from_pretrained("Muennighoff/SGPT-5.8B-weightedmean-msmarco-specb-bitfit")
|
75 |
+
#self.model = AutoModel.from_pretrained("Muennighoff/SGPT-5.8B-weightedmean-msmarco-specb-bitfit")
|
76 |
+
# Deactivate Dropout (There is no dropout in the above models so it makes no difference here but other SGPT models may have dropout)
|
77 |
+
self.model.eval()
|
78 |
+
|
79 |
+
def compute_embeddings(self,input_data,is_file):
|
80 |
+
if (self.debug):
|
81 |
+
print("Computing embeddings for:", input_data[:20])
|
82 |
+
model = self.model
|
83 |
+
tokenizer = self.tokenizer
|
84 |
+
|
85 |
+
texts = read_text(input_data) if is_file == True else input_data
|
86 |
+
|
87 |
+
# Tokenize input texts
|
88 |
+
batch_tokens = tokenizer(texts, padding=True, truncation=True, return_tensors="pt")
|
89 |
+
|
90 |
+
# Get the embeddings
|
91 |
+
with torch.no_grad():
|
92 |
+
# Get hidden state of shape [bs, seq_len, hid_dim]
|
93 |
+
last_hidden_state = model(**batch_tokens, output_hidden_states=True, return_dict=True).last_hidden_state
|
94 |
+
|
95 |
+
# Get weights of shape [bs, seq_len, hid_dim]
|
96 |
+
weights = (
|
97 |
+
torch.arange(start=1, end=last_hidden_state.shape[1] + 1)
|
98 |
+
.unsqueeze(0)
|
99 |
+
.unsqueeze(-1)
|
100 |
+
.expand(last_hidden_state.size())
|
101 |
+
.float().to(last_hidden_state.device)
|
102 |
+
)
|
103 |
+
|
104 |
+
# Get attn mask of shape [bs, seq_len, hid_dim]
|
105 |
+
input_mask_expanded = (
|
106 |
+
batch_tokens["attention_mask"]
|
107 |
+
.unsqueeze(-1)
|
108 |
+
.expand(last_hidden_state.size())
|
109 |
+
.float()
|
110 |
+
)
|
111 |
+
|
112 |
+
# Perform weighted mean pooling across seq_len: bs, seq_len, hidden_dim -> bs, hidden_dim
|
113 |
+
sum_embeddings = torch.sum(last_hidden_state * input_mask_expanded * weights, dim=1)
|
114 |
+
sum_mask = torch.sum(input_mask_expanded * weights, dim=1)
|
115 |
+
|
116 |
+
embeddings = sum_embeddings / sum_mask
|
117 |
+
return texts,embeddings
|
118 |
+
|
119 |
+
def output_results(self,output_file,texts,embeddings,main_index = 0):
|
120 |
+
# Calculate cosine similarities
|
121 |
+
# Cosine similarities are in [-1, 1]. Higher means more similar
|
122 |
+
cosine_dict = {}
|
123 |
+
if (self.debug):
|
124 |
+
print("Total sentences",len(texts))
|
125 |
+
for i in range(len(texts)):
|
126 |
+
cosine_dict[texts[i]] = 1 - cosine(embeddings[main_index], embeddings[i])
|
127 |
+
|
128 |
+
if (self.debug):
|
129 |
+
print("Input sentence:",texts[main_index])
|
130 |
+
sorted_dict = dict(sorted(cosine_dict.items(), key=lambda item: item[1],reverse = True))
|
131 |
+
if (self.debug):
|
132 |
+
for key in sorted_dict:
|
133 |
+
print("Cosine similarity with \"%s\" is: %.3f" % (key, sorted_dict[key]))
|
134 |
+
if (output_file is not None):
|
135 |
+
with open(output_file,"w") as fp:
|
136 |
+
fp.write(json.dumps(sorted_dict,indent=0))
|
137 |
+
return sorted_dict
|
138 |
+
|
139 |
+
|
140 |
+
|
141 |
+
|
142 |
+
|
143 |
+
class HFModel:
|
144 |
+
def __init__(self):
|
145 |
+
self.model = None
|
146 |
+
self.tokenizer = None
|
147 |
+
self.debug = False
|
148 |
+
print("In HF Constructor")
|
149 |
+
|
150 |
+
|
151 |
+
def init_model(self,model_name = None):
|
152 |
+
# Get our models - The package will take care of downloading the models automatically
|
153 |
+
# For best performance: Muennighoff/SGPT-5.8B-weightedmean-nli-bitfit
|
154 |
+
#print("Init model",model_name)
|
155 |
+
if (model_name is None):
|
156 |
+
model_name = "sentence-transformers/all-MiniLM-L6-v2"
|
157 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
158 |
+
self.model = AutoModel.from_pretrained(model_name)
|
159 |
+
self.model.eval()
|
160 |
+
|
161 |
+
def mean_pooling(self,model_output, attention_mask):
|
162 |
+
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
163 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
164 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
165 |
+
|
166 |
+
def compute_embeddings(self,input_data,is_file):
|
167 |
+
#print("Computing embeddings for:", input_data[:20])
|
168 |
+
model = self.model
|
169 |
+
tokenizer = self.tokenizer
|
170 |
+
|
171 |
+
texts = read_text(input_data) if is_file == True else input_data
|
172 |
+
|
173 |
+
encoded_input = tokenizer(texts, padding=True, truncation=True, return_tensors='pt')
|
174 |
+
|
175 |
+
# Compute token embeddings
|
176 |
+
with torch.no_grad():
|
177 |
+
model_output = model(**encoded_input)
|
178 |
+
|
179 |
+
# Perform pooling
|
180 |
+
sentence_embeddings = self.mean_pooling(model_output, encoded_input['attention_mask'])
|
181 |
+
|
182 |
+
# Normalize embeddings
|
183 |
+
sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
|
184 |
+
|
185 |
+
return texts,sentence_embeddings
|
186 |
+
|
187 |
+
def output_results(self,output_file,texts,embeddings,main_index = 0):
|
188 |
+
# Calculate cosine similarities
|
189 |
+
# Cosine similarities are in [-1, 1]. Higher means more similar
|
190 |
+
cosine_dict = {}
|
191 |
+
#print("Total sentences",len(texts))
|
192 |
+
for i in range(len(texts)):
|
193 |
+
cosine_dict[texts[i]] = 1 - cosine(embeddings[main_index], embeddings[i])
|
194 |
+
|
195 |
+
#print("Input sentence:",texts[main_index])
|
196 |
+
sorted_dict = dict(sorted(cosine_dict.items(), key=lambda item: item[1],reverse = True))
|
197 |
+
if (self.debug):
|
198 |
+
for key in sorted_dict:
|
199 |
+
print("Cosine similarity with \"%s\" is: %.3f" % (key, sorted_dict[key]))
|
200 |
+
if (output_file is not None):
|
201 |
+
with open(output_file,"w") as fp:
|
202 |
+
fp.write(json.dumps(sorted_dict,indent=0))
|
203 |
+
return sorted_dict
|
204 |
+
|
205 |
+
|
206 |
+
|
207 |
+
if __name__ == '__main__':
|
208 |
+
parser = argparse.ArgumentParser(description='SGPT model for sentence embeddings ',formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
209 |
+
parser.add_argument('-input', action="store", dest="input",required=True,help="Input file with sentences")
|
210 |
+
parser.add_argument('-output', action="store", dest="output",default="output.txt",help="Output file with results")
|
211 |
+
parser.add_argument('-model', action="store", dest="model",default="sentence-transformers/all-MiniLM-L6-v2",help="model name")
|
212 |
+
|
213 |
+
results = parser.parse_args()
|
214 |
+
obj = HFModel()
|
215 |
+
obj.init_model(results.model)
|
216 |
+
texts, embeddings = obj.compute_embeddings(results.input,is_file = True)
|
217 |
+
results = obj.output_results(results.output,texts,embeddings)
|