import random import requests from base64 import b64decode from flask import Flask, request, jsonify, Response, stream_with_context, render_template_string from transformers import AutoTokenizer def calc_tokens(text): tokenizer = AutoTokenizer.from_pretrained("PJMixers/CohereForAI_c4ai-command-r-plus-tokenizer") tokens = tokenizer.tokenize(text) return len(tokens) def calc_messages_tokens(json_data): messages = json_data["messages"] m_messages = [] user_count = 0 prompt = "" for message in messages: if message["role"] == "system": prompt += f"<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>{message['content']}<|END_OF_TURN_TOKEN|>" elif message["role"] == "user": user_count += 1 prompt += f"<|START_OF_TURN_TOKEN|><|USER_TOKEN|>{message['content']}<|END_OF_TURN_TOKEN|>" elif message["role"] == "assistant": prompt += f"<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>{message['content']}<|END_OF_TURN_TOKEN|>" else: continue prompt += "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>" total_tokens = calc_tokens(prompt) + user_count + 1 return total_tokens + 10 # for robustness app = Flask(__name__) @app.route('/', methods=['GET']) def index(): template = ''' Command-R-Plus Chat API

Command-R-Plus OpenAI Compatible API

You need to be a HF PRO user to use it.

  • 1. Create your token(as api key) [here] by selecting "serverless Inference API".
  • 2. Set `https://tastypear-command-r-plus-chat.hf.space/api" as the domain in the client configuration.
  • If you have multiple keys, you can concatenate them with a semicolon (`;`) to use them randomly, e.g., `hf_aaaa;hf_bbbb;hf_...` ''' return render_template_string(template) def get_new_bearer(key): data = "C1RvUWoZAjd+ZBUyIV1CXjB3ay1VCA98Im4rWH5gVlZbKS1aBjhYU2YjHyVFeDwvI3x9cy92Vw1bKS5VHFM5VU9QVmpiDxJ6EmNSP1EHOgV6dCEOKEdncCJ7YBZmKQlkF1AYSkBOc0hiNhFBBHRWUmNrDQBycjUIOF5/WD1LRyZ/BidjFmEuelxBU3B9IhVDAnV5TXQRMGxFUDkDDVRnWzNVYg9DAQJiIVEqfFtRcXd3Lgd5CFx/U3AMDA1jPA4APUtifgh7fid7BhxJE28bSnVtYmdVAQt/CkdJYl4NDCRZQiNsCktrcwh3RwBlHQJUFngmdU9/Xl5eKC54KWdZXlYbAClJZAAlESdcUjt2eA5GASpUAmgKUkJ2cGdyBDZQCkpxUVQXLB51fy83GFh4PgxXcilgHCBdHVsZWnJjb0JEMAhaGWpeen8GDDR9fCMtLGBbeDA7RQdtLxJJDksCYGJ4VWVvNiRZNX9Ab0MtDRJ6RTM2NEVaeyJ+XGtaAzphAFcHd09Vd2FEBStDBnZGXkgMBjdPRQARG2phfCJzfS9Kbw1LO0w4cE5VektlARFbGX1EZUwLISplZh8JGGRxVTZCTDdrLgE=" data = b64decode(data) key = (key * (len(data) // len(key) + 1))[:len(data)] data = (bytes([a ^ b for a, b in zip(data, key.encode())])).decode() return random.choice(data.split('\n')) @app.route('/api/v1/chat/completions', methods=['POST']) def proxy(): headers = dict(request.headers) headers.pop('Host', None) headers.pop('Content-Length', None) bearer = request.headers['Authorization'].split(' ')[1] if(bearer.startswith('hf_')): # for public usage headers['Authorization'] = f"Bearer {random.choice(bearer.split(';'))}" else: # my private keys headers['Authorization'] = f'Bearer {get_new_bearer(bearer)}' headers['X-Use-Cache'] = 'false' json_data = request.get_json() # Use the largest ctx json_data['max_tokens'] = 32768 - calc_messages_tokens(json_data) json_data['json_mode'] = False model = 'CohereForAI/c4ai-command-r-plus' def generate(): with requests.post(f"https://api-inference.huggingface.co/models/{model}/v1/chat/completions", json=request.json, headers=headers, stream=True) as resp: for chunk in resp.iter_content(chunk_size=1024): if chunk: yield chunk return Response(stream_with_context(generate()), content_type='text/event-stream') #import gevent.pywsgi #from gevent import monkey;monkey.patch_all() if __name__ == "__main__": app.run(debug=True) # gevent.pywsgi.WSGIServer((args.host, args.port), app).serve_forever()