import random import requests from flask import Flask, request, jsonify, Response, stream_with_context, render_template_string from mistral_common.protocol.instruct.messages import AssistantMessage, UserMessage, SystemMessage from mistral_common.tokens.tokenizers.mistral import MistralTokenizer from mistral_common.protocol.instruct.request import ChatCompletionRequest mt_v3 = MistralTokenizer.v3(is_tekken=True) def calc_messages_tokens(json_data): messages = json_data["messages"] m_messages = [] for message in messages: if message["role"] == "system": m_messages.append(SystemMessage(content=message["content"])) elif message["role"] == "user": m_messages.append(UserMessage(content=message["content"])) elif message["role"] == "assistant": m_messages.append(AssistantMessage(content=message["content"])) else: continue tokens = mt_v3.encode_chat_completion(ChatCompletionRequest(messages=m_messages)).tokens return len(tokens) + len(m_messages) app = Flask(__name__) @app.route('/', methods=['GET']) def index(): template = ''' Mistral-Nemo Chat API

Mistral-Nemo OpenAI Compatible API

  • Create your token(use as api key) [here] by selecting "serverless Inference API".
  • 2. Set "https://tastypear-mistral-nemo-chat.hf.space/api" as the domain in the client configuration.
  • If you have multiple keys, you can concatenate them with a semicolon (`;`) to use them randomly, e.g., `hf_aaaa;hf_bbbb;hf_...` ''' return render_template_string(template) @app.route('/api/v1/chat/completions', methods=['POST']) def proxy(): headers = dict(request.headers) headers.pop('Host', None) headers.pop('Content-Length', None) keys = request.headers['Authorization'].split(' ')[1].split(';') headers['Authorization'] = f'Bearer {random.choice(keys)}' json_data = request.get_json() # Avoid using cache json_data["messages"][-1]['content'] = ' '*random.randint(1, 20)+json_data["messages"][-1]['content'] # Use the largest ctx json_data['max_tokens'] = 32768 - calc_messages_tokens(json_data) json_data['json_mode'] = False model = 'mistralai/Mistral-Nemo-Instruct-2407' def generate(): with requests.post(f"https://api-inference.huggingface.co/models/{model}/v1/chat/completions", json=request.json, headers=headers, stream=True) as resp: for chunk in resp.iter_content(chunk_size=1024): if chunk: yield chunk return Response(stream_with_context(generate()), content_type='text/event-stream') #import gevent.pywsgi #from gevent import monkey;monkey.patch_all() if __name__ == "__main__": app.run(debug=True) # gevent.pywsgi.WSGIServer((args.host, args.port), app).serve_forever()