Spaces:
Runtime error
Runtime error
Create new file
Browse files
app.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import nltk
|
3 |
+
from transformers import pipeline
|
4 |
+
from sentence_transformers import SentenceTransformer
|
5 |
+
from scipy.spatial.distance import cosine
|
6 |
+
import numpy as np
|
7 |
+
import seaborn as sns
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
from sklearn.cluster import KMeans
|
10 |
+
import tensorflow as tf
|
11 |
+
import tensorflow_hub as hub
|
12 |
+
|
13 |
+
|
14 |
+
def cluster_examples(messages, embed, nc=3):
|
15 |
+
km = KMeans(
|
16 |
+
n_clusters=nc, init='random',
|
17 |
+
n_init=10, max_iter=300,
|
18 |
+
tol=1e-04, random_state=0
|
19 |
+
)
|
20 |
+
km = km.fit_predict(embed)
|
21 |
+
for n in range(nc):
|
22 |
+
idxs = [i for i in range(len(km)) if km[i] == n]
|
23 |
+
ms = [messages[i] for i in idxs]
|
24 |
+
st.markdown ("CLUSTER : %d"%n)
|
25 |
+
for m in ms:
|
26 |
+
st.markdown (m)
|
27 |
+
|
28 |
+
|
29 |
+
def plot_heatmap(labels, heatmap, rotation=90):
|
30 |
+
sns.set(font_scale=1.2)
|
31 |
+
fig, ax = plt.subplots()
|
32 |
+
g = sns.heatmap(
|
33 |
+
heatmap,
|
34 |
+
xticklabels=labels,
|
35 |
+
yticklabels=labels,
|
36 |
+
vmin=-1,
|
37 |
+
vmax=1,
|
38 |
+
cmap="coolwarm")
|
39 |
+
g.set_xticklabels(labels, rotation=rotation)
|
40 |
+
g.set_title("Textual Similarity")
|
41 |
+
st.pyplot(fig)
|
42 |
+
|
43 |
+
# Streamlit text boxes
|
44 |
+
text = st.text_area('Enter sentences:', value="Behavior right this is a kind of Heisenberg uncertainty principle situation if I told you, then you behave differently. What would be the impressive thing is you have talked about winning a nobel prize in a system winning a nobel prize. Adjusting it and then making your own. That is when I fell in love with computers. I realized that they were a very magical device. Can go to sleep come back the next day and it is solved. You know that feels magical to me.")
|
45 |
+
|
46 |
+
nc = st.slider('Select a number of clusters:', min_value=1, max_value=15, value=3)
|
47 |
+
|
48 |
+
model_type = st.radio("Choose model:", ('Sentence Transformer', 'Universal Sentence Encoder'), index=0)
|
49 |
+
|
50 |
+
# Model setup
|
51 |
+
if model_type == "Sentence Transformer":
|
52 |
+
model = SentenceTransformer('paraphrase-distilroberta-base-v1')
|
53 |
+
elif model_type == "Universal Sentence Encoder":
|
54 |
+
model_url = "https://tfhub.dev/google/universal-sentence-encoder-large/5"
|
55 |
+
model = hub.load(model_url)
|
56 |
+
|
57 |
+
nltk.download('punkt')
|
58 |
+
|
59 |
+
# Run model
|
60 |
+
if text:
|
61 |
+
sentences = nltk.tokenize.sent_tokenize(text)
|
62 |
+
if model_type == "Sentence Transformer":
|
63 |
+
embed = model.encode(sentences)
|
64 |
+
elif model_type == "Universal Sentence Encoder":
|
65 |
+
embed = model(sentences).numpy()
|
66 |
+
sim = np.zeros([len(embed), len(embed)])
|
67 |
+
for i,em in enumerate(embed):
|
68 |
+
for j,ea in enumerate(embed):
|
69 |
+
sim[i][j] = 1.0-cosine(em,ea)
|
70 |
+
st.subheader("Similarity Heatmap")
|
71 |
+
plot_heatmap(sentences, sim)
|
72 |
+
st.subheader("Results from K-Means Clustering")
|
73 |
+
cluster_examples(sentences, embed, nc)
|