import argparse import os import random from flask import Flask, redirect, url_for, request import numpy as np import torch import torch.backends.cudnn as cudnn import gradio as gr from minigpt4.common.config import Config from minigpt4.common.dist_utils import get_rank from minigpt4.common.registry import registry from minigpt4.conversation.conversation import Chat, CONV_VISION # imports modules for registration from minigpt4.datasets.builders import * from minigpt4.models import * from minigpt4.processors import * from minigpt4.runners import * from minigpt4.tasks import * from PIL import Image import requests from huggingface_hub import login login("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") def parse_args(): parser = argparse.ArgumentParser(description="Demo") parser.add_argument("--cfg-path", required=True, help="path to configuration file.") parser.add_argument("--gpu-id", type=int, default=0, help="specify the gpu to load the model.") parser.add_argument( "--options", nargs="+", help="override some settings in the used config, the key-value pair " "in xxx=yyy format will be merged into config file (deprecate), " "change to --cfg-options instead.", ) args = parser.parse_args() return args def setup_seeds(config): seed = config.run_cfg.seed + get_rank() random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) cudnn.benchmark = False cudnn.deterministic = True # ======================================== # Model Initialization # ======================================== print('Initializing Chat') args = parse_args() cfg = Config(args) model_config = cfg.model_cfg model_config.device_8bit = args.gpu_id model_cls = registry.get_model_class(model_config.arch) model = model_cls.from_config(model_config).to('cuda:{}'.format(args.gpu_id)) vis_processor_cfg = cfg.datasets_cfg.cc_sbu_align.vis_processor.train vis_processor = registry.get_processor_class(vis_processor_cfg.name).from_config(vis_processor_cfg) chat = Chat(model, vis_processor, device='cuda:{}'.format(args.gpu_id)) print('Initialization Finished') # # curl -X POST -H "Content-Type: application/x-www-form-urlencoded" -d "user_message=Response in json format with keys image_description, name, objects, object_name, object_color. " http://127.0.0.1:5000 # curl -X POST -H "Content-Type: application/x-www-form-urlencoded" -d "user_message=describe the image" http://127.0.0.1:5000 #curl -X POST -H "Content-Type: application/x-www-form-urlencoded" -d "user_message=Response in json format with keys image_description, name, objects, object_name, object_color. " http://127.0.0.1:5000 app = Flask(__name__) app.config["DEBUG"] = False @app.route('/', methods = ['POST', 'GET']) def home(): user_message = request.form['user_message'] image = Image.open(requests.get(request.form['image'], stream=True).raw) print(user_message) chat_state = CONV_VISION.copy() chat_state.messages = [] img_list = [] llm_message = chat.upload_img(image, chat_state, img_list) chat.ask(user_message, chat_state) llm_message = chat.answer(conv=chat_state, img_list=img_list, num_beams=5, temperature=1, max_new_tokens=600, max_length=2000)[0] return llm_message app.run(host='0.0.0.0')