Update app.py
Browse files
app.py
CHANGED
@@ -1,30 +1,3 @@
|
|
1 |
-
"""import gradio as gr
|
2 |
-
import onnxruntime as rt
|
3 |
-
from transformers import AutoTokenizer
|
4 |
-
import torch, json
|
5 |
-
|
6 |
-
tokenizer = AutoTokenizer.from_pretrained("neuralmind/bert-large-portuguese-cased")
|
7 |
-
|
8 |
-
with open("genre_types_encoded.json", "r") as fp:
|
9 |
-
encode_genre_types = json.load(fp)
|
10 |
-
|
11 |
-
genres = list(encode_genre_types.keys())
|
12 |
-
|
13 |
-
inf_session = rt.InferenceSession('movie-classifier-quantized.onnx')
|
14 |
-
input_name = inf_session.get_inputs()[0].name
|
15 |
-
output_name = inf_session.get_outputs()[0].name
|
16 |
-
|
17 |
-
def classify_movie_genre(sinopse):
|
18 |
-
input_ids = tokenizer(sinopse)['input_ids'][:512]
|
19 |
-
logits = inf_session.run([output_name], {input_name: [input_ids]})[0]
|
20 |
-
logits = torch.FloatTensor(logits)
|
21 |
-
probs = torch.sigmoid(logits)[0]
|
22 |
-
return dict(zip(genres, map(float, probs)))
|
23 |
-
|
24 |
-
label = gr.outputs.Label(num_top_classes=5)
|
25 |
-
iface = gr.Interface(fn=classify_movie_genre, inputs="text", outputs=label)
|
26 |
-
iface.launch(inline=False)"""
|
27 |
-
|
28 |
import gradio as gr
|
29 |
import onnxruntime as rt
|
30 |
from transformers import AutoTokenizer
|
@@ -71,5 +44,5 @@ inputs = [
|
|
71 |
|
72 |
|
73 |
label = gr.outputs.Label(num_top_classes=4)
|
74 |
-
iface = gr.Interface(fn=classify_movie_genre, inputs=inputs, outputs=label, examples=app_examples)
|
75 |
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import onnxruntime as rt
|
3 |
from transformers import AutoTokenizer
|
|
|
44 |
|
45 |
|
46 |
label = gr.outputs.Label(num_top_classes=4)
|
47 |
+
iface = gr.Interface(fn=classify_movie_genre, inputs=inputs, outputs=label, examples=app_examples, theme='gradio/monochrome')
|
48 |
iface.launch()
|