Spaces:
Running
Running
File size: 1,764 Bytes
2ff0eb9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
import os
import sys
import openai
from langchain.chains import ConversationalRetrievalChain, RetrievalQA
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import DirectoryLoader, TextLoader
from langchain.embeddings import OpenAIEmbeddings
from langchain.indexes import VectorstoreIndexCreator
from langchain.indexes.vectorstore import VectorStoreIndexWrapper
from langchain.llms import OpenAI
__import__('pysqlite3')
import sys
sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')
from langchain.vectorstores import Chroma
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAPIKEY")
# Enable to save to disk & reuse the model (for repeated queries on the same data)
PERSIST = False
query = None
if len(sys.argv) > 1:
query = sys.argv[1]
if PERSIST and os.path.exists("persist"):
print("Reusing index...\n")
vectorstore = Chroma(persist_directory="persist", embedding_function=OpenAIEmbeddings())
index = VectorStoreIndexWrapper(vectorstore=vectorstore)
else:
loader = TextLoader("input/input_data.txt") # Use this line if you only need data.txt
# loader = DirectoryLoader("data/")
if PERSIST:
index = VectorstoreIndexCreator(vectorstore_kwargs={"persist_directory":"persist"}).from_loaders([loader])
else:
index = VectorstoreIndexCreator().from_loaders([loader])
chain = ConversationalRetrievalChain.from_llm(
llm=ChatOpenAI(model="gpt-3.5-turbo"),
retriever=index.vectorstore.as_retriever(search_kwargs={"k": 1}),
)
chat_history = []
while True:
if not query:
query = input("Prompt: ")
if query in ['quit', 'q', 'exit']:
sys.exit()
result = chain({"question": query, "chat_history": chat_history})
print(result['answer'])
chat_history.append((query, result['answer']))
query = None |