File size: 10,817 Bytes
2473bb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import os
import platform
import uuid
import shutil
from pydub import AudioSegment
import spaces
import torch
import gradio as gr
from huggingface_hub import snapshot_download

from examples.get_examples import get_examples
from src.facerender.pirender_animate import AnimateFromCoeff_PIRender
from src.utils.preprocess import CropAndExtract
from src.test_audio2coeff import Audio2Coeff
from src.facerender.animate import AnimateFromCoeff
from src.generate_batch import get_data
from src.generate_facerender_batch import get_facerender_data
from src.utils.init_path import init_path

checkpoint_path = 'checkpoints'
config_path = 'src/config'
device = "cuda" if torch.cuda.is_available(
) else "mps" if platform.system() == 'Darwin' else "cpu"

os.environ['TORCH_HOME'] = checkpoint_path
snapshot_download(repo_id='vinthony/SadTalker-V002rc',
                  local_dir=checkpoint_path, local_dir_use_symlinks=True)


def mp3_to_wav(mp3_filename, wav_filename, frame_rate):
    AudioSegment.from_file(file=mp3_filename).set_frame_rate(
        frame_rate).export(wav_filename, format="wav")


@spaces.GPU(duration=120)
def generate_video(source_image, driven_audio, preprocess='crop', still_mode=False, use_enhancer=False,

                   batch_size=1, size=256, pose_style=0, facerender='facevid2vid', exp_scale=1.0,

                   use_ref_video=False, ref_video=None, ref_info=None, use_idle_mode=False,

                   length_of_audio=0, use_blink=True, result_dir='./results/'):
    # Initialize models and paths
    sadtalker_paths = init_path(
        checkpoint_path, config_path, size, False, preprocess)
    audio_to_coeff = Audio2Coeff(sadtalker_paths, device)
    preprocess_model = CropAndExtract(sadtalker_paths, device)
    animate_from_coeff = AnimateFromCoeff(sadtalker_paths, device) if facerender == 'facevid2vid' and device != 'mps' \
        else AnimateFromCoeff_PIRender(sadtalker_paths, device)

    # Create directories for saving results
    time_tag = str(uuid.uuid4())
    save_dir = os.path.join(result_dir, time_tag)
    os.makedirs(save_dir, exist_ok=True)
    input_dir = os.path.join(save_dir, 'input')
    os.makedirs(input_dir, exist_ok=True)

    # Process source image
    pic_path = os.path.join(input_dir, os.path.basename(source_image))
    shutil.move(source_image, input_dir)

    # Process driven audio
    if driven_audio and os.path.isfile(driven_audio):
        audio_path = os.path.join(input_dir, os.path.basename(driven_audio))
        if '.mp3' in audio_path:
            mp3_to_wav(driven_audio, audio_path.replace('.mp3', '.wav'), 16000)
            audio_path = audio_path.replace('.mp3', '.wav')
        else:
            shutil.move(driven_audio, input_dir)
    elif use_idle_mode:
        audio_path = os.path.join(
            input_dir, 'idlemode_'+str(length_of_audio)+'.wav')
        AudioSegment.silent(
            duration=1000*length_of_audio).export(audio_path, format="wav")
    else:
        assert use_ref_video and ref_info == 'all'

    # Process reference video
    if use_ref_video and ref_info == 'all':
        ref_video_videoname = os.path.splitext(os.path.split(ref_video)[-1])[0]
        audio_path = os.path.join(save_dir, ref_video_videoname+'.wav')
        os.system(
            f"ffmpeg -y -hide_banner -loglevel error -i {ref_video} {audio_path}")
        ref_video_frame_dir = os.path.join(save_dir, ref_video_videoname)
        os.makedirs(ref_video_frame_dir, exist_ok=True)
        ref_video_coeff_path, _, _ = preprocess_model.generate(
            ref_video, ref_video_frame_dir, preprocess, source_image_flag=False)
    else:
        ref_video_coeff_path = None

    # Preprocess source image
    first_frame_dir = os.path.join(save_dir, 'first_frame_dir')
    os.makedirs(first_frame_dir, exist_ok=True)
    first_coeff_path, crop_pic_path, crop_info = preprocess_model.generate(
        pic_path, first_frame_dir, preprocess, True, size)
    if first_coeff_path is None:
        raise AttributeError("No face is detected")

    # Determine reference coefficients
    ref_pose_coeff_path, ref_eyeblink_coeff_path = None, None
    if use_ref_video:
        if ref_info == 'pose':
            ref_pose_coeff_path = ref_video_coeff_path
        elif ref_info == 'blink':
            ref_eyeblink_coeff_path = ref_video_coeff_path
        elif ref_info == 'pose+blink':
            ref_pose_coeff_path = ref_eyeblink_coeff_path = ref_video_coeff_path
    else:
        ref_pose_coeff_path = ref_eyeblink_coeff_path = None

    # Generate coefficients from audio or reference video
    if use_ref_video and ref_info == 'all':
        coeff_path = ref_video_coeff_path
    else:
        batch = get_data(first_coeff_path, audio_path, device, ref_eyeblink_coeff_path=ref_eyeblink_coeff_path,
                         still=still_mode, idlemode=use_idle_mode, length_of_audio=length_of_audio, use_blink=use_blink)
        coeff_path = audio_to_coeff.generate(
            batch, save_dir, pose_style, ref_pose_coeff_path)

    # Generate video from coefficients
    data = get_facerender_data(coeff_path, crop_pic_path, first_coeff_path, audio_path, batch_size, still_mode=still_mode,
                               preprocess=preprocess, size=size, expression_scale=exp_scale, facemodel=facerender)
    return_path = animate_from_coeff.generate(data, save_dir, pic_path, crop_info, enhancer='gfpgan' if use_enhancer else None,
                                              preprocess=preprocess, img_size=size)
    video_name = data['video_name']
    print(f'The generated video is named {video_name} in {save_dir}')

    return return_path


# Gradio UI
with gr.Blocks(analytics_enabled=False) as demo:
    with gr.Row():
        with gr.Column(variant='panel'):
            with gr.Tabs(elem_id="sadtalker_source_image"):
                with gr.TabItem('Source image'):
                    with gr.Row():
                        source_image = gr.Image(
                            label="Source image", sources="upload", type="filepath", elem_id="img2img_image")

            with gr.Tabs(elem_id="sadtalker_driven_audio"):
                with gr.TabItem('Driving Methods'):
                    gr.Markdown(
                        "Possible driving combinations: <br> 1. Audio only 2. Audio/IDLE Mode + Ref Video(pose, blink, pose+blink) 3. IDLE Mode only 4. Ref Video only (all) ")

                    with gr.Row():
                        driven_audio = gr.Audio(
                            label="Input audio", sources="upload", type="filepath")
                        driven_audio_no = gr.Audio(
                            label="Use IDLE mode, no audio is required", sources="upload", type="filepath", visible=False)

                        with gr.Column():
                            use_idle_mode = gr.Checkbox(
                                label="Use Idle Animation")
                            length_of_audio = gr.Number(
                                value=5, label="The length(seconds) of the generated video.")
                            use_idle_mode.change(lambda choice: (gr.update(visible=not choice), gr.update(visible=choice)),
                                                 inputs=use_idle_mode, outputs=[driven_audio, driven_audio_no])

                    with gr.Row():
                        ref_video = gr.Video(
                            label="Reference Video", sources="upload", elem_id="vidref")

                        with gr.Column():
                            use_ref_video = gr.Checkbox(
                                label="Use Reference Video")
                            ref_info = gr.Radio(['pose', 'blink', 'pose+blink', 'all'], value='pose', label='Reference Video',
                                                info="How to borrow from reference Video?((fully transfer, aka, video driving mode))")

                        ref_video.change(lambda path: gr.update(
                            value=path is not None), inputs=ref_video, outputs=use_ref_video)

        with gr.Column(variant='panel'):
            with gr.Tabs(elem_id="sadtalker_checkbox"):
                with gr.TabItem('Settings'):
                    with gr.Column(variant='panel'):
                        with gr.Row():
                            pose_style = gr.Slider(
                                minimum=0, maximum=45, step=1, label="Pose style", value=0)
                            exp_weight = gr.Slider(
                                minimum=0, maximum=3, step=0.1, label="expression scale", value=1)
                            blink_every = gr.Checkbox(
                                label="use eye blink", value=True)

                        with gr.Row():
                            size_of_image = gr.Radio(
                                [256, 512], value=256, label='face model resolution', info="use 256/512 model?")
                            preprocess_type = gr.Radio(
                                ['crop', 'resize', 'full', 'extcrop', 'extfull'], value='crop', label='preprocess', info="How to handle input image?")

                        with gr.Row():
                            is_still_mode = gr.Checkbox(
                                label="Still Mode (fewer head motion, works with preprocess `full`)")
                            facerender = gr.Radio(
                                ['facevid2vid', 'pirender'], value='facevid2vid', label='facerender', info="which face render?")

                        with gr.Row():
                            batch_size = gr.Slider(
                                label="batch size in generation", step=1, maximum=10, value=1)
                            enhancer = gr.Checkbox(
                                label="GFPGAN as Face enhancer", value=True)

                        submit = gr.Button(
                            'Generate', elem_id="sadtalker_generate", variant='primary')

            with gr.Tabs(elem_id="sadtalker_generated"):
                gen_video = gr.Video(label="Generated video")

    submit.click(
        fn=generate_video,
        inputs=[source_image, driven_audio, preprocess_type, is_still_mode, enhancer, batch_size, size_of_image,
                pose_style, facerender, exp_weight, use_ref_video, ref_video, ref_info, use_idle_mode, length_of_audio, blink_every],
        outputs=[gen_video],
    )

    with gr.Row():
        gr.Examples(examples=get_examples(), inputs=[source_image, driven_audio, preprocess_type, is_still_mode, enhancer],
                    outputs=[gen_video], fn=generate_video)

demo.launch(debug=True)