Spaces:
Runtime error
Runtime error
File size: 9,366 Bytes
fa6856c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
### Load Model From huggingface
import os
import tqdm
import joblib
import numpy as np
import pandas as pd
import torch
from transformers import AutoTokenizer, AutoModel
import wandb
import peft
import loralib as lora
from peft import LoraConfig
import json
from torch.utils.data import DataLoader
from torch.utils.data import Dataset
from accelerate import Accelerator, DeepSpeedPlugin
from transformers import get_linear_schedule_with_warmup
"""
extra requirements:
pip install icetk
"""
checkpoint = "/model/chatglm-6b"
datafile='datasets/merge.json'
out_dir= 'outs/chatglm-6b'
use_wandb=True
mixed_precision = 'bf16'
accumulate_step = 8
log_interval = 100
Per_GPU_BATCH_SIZE = 2
MAX_LENGTH = 256 # have huge impact on VRAM: 968:1, 256:4
config = LoraConfig(
peft_type="LORA",
r=32,
lora_alpha=32,
target_modules=["q", "k", "v"],
lora_dropout=0.1,
)
LR = 2e-5
NUM_EPOCHS = 3
warm_up_ratio = 0.1
device_map = "auto"
world_size = int(os.environ.get("WORLD_SIZE", 1))
ddp = world_size != 1
if ddp:
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)}
if use_wandb:
wandb.init(
project="LoRA",
name=f"{checkpoint}-{datafile}",
config=None,
)
else:
wandb.init(mode='disabled')
os.makedirs(out_dir, exist_ok=True)
tokenizer = AutoTokenizer.from_pretrained(
checkpoint,
trust_remote_code=True,
device_map=device_map,
)
# BUG: must remove special token '[MASK]'
# del tokenizer.vocab['MASK']
### Dataset
EOS_ID = 150005
PROMPT_DICT = {
"prompt_input": (
"Below is an instruction that describes a task, paired with an input that provides further context. "
"Write a response that appropriately completes the request.\n\n"
"### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:"
),
"prompt_no_input": (
"Below is an instruction that describes a task. "
"Write a response that appropriately completes the request.\n\n"
"### Instruction:\n{instruction}\n\n### Response:"
),
}
with open(datafile, 'r') as f:
content = json.load(f)
pairs = []
for line in content:
if line['input'] == '':
prompt = PROMPT_DICT['prompt_no_input'].format_map(line)
else:
prompt = PROMPT_DICT['prompt_input'].format_map(line)
completion = line['output']+'</s>'
if len(prompt) + len(completion) < MAX_LENGTH:
pairs.append({'prompt':prompt, 'completion':completion})
class AlpacaDataset(Dataset):
def __init__(self, pairs, tokenizer) -> None:
super().__init__()
self.pairs = pairs
self.tokenizer = tokenizer
def __getitem__(self, index):
if self.pairs[index]['completion'][-4:] == '</s>':
prompt = self.tokenizer.encode(self.pairs[index]['prompt'])
completion = self.tokenizer.encode(self.pairs[index]['completion'][:-4], add_special_tokens=False)
completion += [EOS_ID]
else:
prompt = self.tokenizer.encode(self.pairs[index]['prompt'])
completion = self.tokenizer.encode(self.pairs[index]['completion'], add_special_tokens=False)
if 150001 not in prompt:
prompt = self.pairs[index]['prompt'].replace('[MASK]', '//MASK//').replace('[gMASK]', '//gMASK//')
completion = self.pairs[index]['completion'].replace('[MASK]', '//MASK//').replace('[gMASK]', '//gMASK//')
prompt = self.tokenizer.encode(prompt)
completion = self.tokenizer.encode(completion, add_special_tokens=False)
if 150001 not in prompt:
import pdb; pdb.set_trace()
return {'prompt':prompt, 'completion':completion}
def __len__(self):
return len(self.pairs)
def collate_fn(batch):
input_ids = []
labels = []
position_ids = []
device='cuda:0'
_max_length = max([len(obj['prompt'])+len(obj['completion']) for obj in batch])
attention_mask = torch.ones((len(batch), _max_length, _max_length), device=device)
attention_mask.tril_()
for i, obj in enumerate(batch):
context_length = obj['prompt'].index(150004)
attention_mask[i, :, :context_length] = 1
to_pad = _max_length - len(obj['prompt']) - len(obj['completion'])
input_ids.append(obj['prompt'] + obj['completion'] + [tokenizer.pad_token_id] * to_pad)
position_ids.append(torch.stack(
[torch.arange(0, _max_length, device=device),
torch.concat([torch.zeros(context_length - 1, device=device),
torch.arange(0, _max_length - context_length + 1, device=device)])]).long()
)
labels.append(torch.tensor([-100] * len(obj['prompt']) + obj['completion'] + [-100] * to_pad, device=device).long())
attention_mask.unsqueeze_(1)
attention_mask = (attention_mask < 0.5).bool()
return {'input_ids': torch.tensor(input_ids).long(),
'attention_mask': attention_mask,
'labels': torch.stack(labels),
'position_ids':torch.stack(position_ids)}
train_dataset = AlpacaDataset(pairs,tokenizer=tokenizer,)
train_dataloader = DataLoader(dataset=train_dataset, collate_fn = collate_fn, shuffle=True, batch_size=Per_GPU_BATCH_SIZE)
# check
for step, batch in enumerate(t:=tqdm.tqdm(train_dataloader)):
pass
model = AutoModel.from_pretrained(
checkpoint,
trust_remote_code=True,
)
deepspeed_plugin = DeepSpeedPlugin(zero_stage=2, gradient_accumulation_steps=accumulate_step)
accelerator = Accelerator(mixed_precision=mixed_precision, gradient_accumulation_steps=accumulate_step, deepspeed_plugin=deepspeed_plugin)
device = accelerator.device
### Insert LoRA to model
class QKV_layer(torch.nn.Module):
def __init__(self, in_features, out_features):
super(QKV_layer, self).__init__()
self.linear_q = torch.nn.Linear(in_features, out_features//3)
self.linear_k = torch.nn.Linear(in_features, out_features//3)
self.linear_v = torch.nn.Linear(in_features, out_features//3)
def update(self, target_layer):
self.linear_q.weight.data = target_layer.weight[:target_layer.out_features//3, :].data
self.linear_q.bias.data = target_layer.bias[:target_layer.out_features//3].data
self.linear_k.weight.data = target_layer.weight[target_layer.out_features//3:target_layer.out_features//3*2, :].data
self.linear_k.bias.data = target_layer.bias[target_layer.out_features//3:target_layer.out_features//3*2].data
self.linear_v.weight.data = target_layer.weight[target_layer.out_features//3*2:, :].data
self.linear_v.bias.data = target_layer.bias[target_layer.out_features//3*2:].data
def forward(self, x):
q = self.linear_q(x)
k = self.linear_k(x)
v = self.linear_v(x)
return torch.concat([q,k,v], dim = -1)
for key, module in model.named_modules():
if key.endswith('attention'):
if isinstance(module.query_key_value, peft.tuners.lora.LoraModel):
module.query_key_value = peft.tuners.lora.LoraModel(config, module.query_key_value.model)
else:
# Here we split the query_key_value layer into three linear layer for LoRA. But you can also use merged linear.
qkv_layer = QKV_layer(module.query_key_value.in_features, module.query_key_value.out_features)
qkv_layer.update(module.query_key_value)
module.query_key_value = qkv_layer
module.query_key_value = peft.tuners.lora.LoraModel(config, module.query_key_value)
lora.mark_only_lora_as_trainable(model)
model_parameters = filter(lambda p: p.requires_grad, model.parameters())
trainable_params = sum([np.prod(p.size()) for p in model_parameters])
non_trainable_params = sum([np.prod(p.size()) for p in model_parameters])
print('trainable_params:{} ({:.2f}%), non_trainable_params:{}'.format(
trainable_params, trainable_params/non_trainable_params*100,non_trainable_params
))
### Training
optimizer = torch.optim.AdamW(model.parameters(), lr=LR)
lr_scheduler = get_linear_schedule_with_warmup(
optimizer=optimizer,
num_warmup_steps=int(len(train_dataloader) / accumulate_step * warm_up_ratio),
num_training_steps=(int(len(train_dataloader) / accumulate_step) * NUM_EPOCHS),
)
model, optimizer, train_dataloader = accelerator.prepare(model, optimizer, train_dataloader)
model.to(device).train()
for epoch in range(NUM_EPOCHS):
total_loss = 0
for step, batch in enumerate(t:=tqdm.tqdm(train_dataloader)):
with accelerator.accumulate(model):
outputs = model(**batch)
loss_detach = outputs.loss.detach().cpu().float()
# t.set_description(f"loss: {loss_detach}")
t.set_postfix(loss=loss_detach.item())
total_loss += loss_detach
loss = outputs.loss
if accelerator.is_main_process:
if step % log_interval == 0:
wandb.log({
'train/loss': loss_detach.item(),
})
accelerator.backward(loss)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
accelerator.wait_for_everyone()
if accelerator.is_main_process:
peft_model_id = f"finetune_{epoch}"
accelerator.save(lora.lora_state_dict(accelerator.unwrap_model(model)), f'{out_dir}/{peft_model_id}.pt')
|