File size: 9,366 Bytes
fa6856c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

### Load Model From huggingface

import os
import tqdm
import joblib
import numpy as np
import pandas as pd

import torch
from transformers import AutoTokenizer, AutoModel
import wandb
import peft
import loralib as lora
from peft import LoraConfig

import json
from torch.utils.data import DataLoader
from torch.utils.data import Dataset

from accelerate import Accelerator, DeepSpeedPlugin
from transformers import get_linear_schedule_with_warmup


"""
extra requirements: 
    pip install icetk
"""
checkpoint = "/model/chatglm-6b"
datafile='datasets/merge.json'
out_dir= 'outs/chatglm-6b'
use_wandb=True

mixed_precision = 'bf16'
accumulate_step = 8
log_interval = 100
Per_GPU_BATCH_SIZE = 2
MAX_LENGTH = 256 # have huge impact on VRAM: 968:1, 256:4
config = LoraConfig(
    peft_type="LORA", 
    r=32,
    lora_alpha=32,
    target_modules=["q", "k", "v"],
    lora_dropout=0.1, 
)
LR = 2e-5
NUM_EPOCHS = 3
warm_up_ratio = 0.1
device_map = "auto"
world_size = int(os.environ.get("WORLD_SIZE", 1))
ddp = world_size != 1
if ddp:
    device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)}
if use_wandb:
    wandb.init(
        project="LoRA",
        name=f"{checkpoint}-{datafile}",
        config=None,
    )
else:
    wandb.init(mode='disabled')

os.makedirs(out_dir, exist_ok=True)

tokenizer = AutoTokenizer.from_pretrained(
    checkpoint, 
    trust_remote_code=True,
    device_map=device_map,
)
# BUG: must remove special token '[MASK]'
# del tokenizer.vocab['MASK'] 


### Dataset
EOS_ID = 150005
PROMPT_DICT = {
    "prompt_input": (
        "Below is an instruction that describes a task, paired with an input that provides further context. "
        "Write a response that appropriately completes the request.\n\n"
        "### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:"
    ),
    "prompt_no_input": (
        "Below is an instruction that describes a task. "
        "Write a response that appropriately completes the request.\n\n"
        "### Instruction:\n{instruction}\n\n### Response:"
    ),
}

with open(datafile, 'r') as f:
    content = json.load(f)
pairs = []
for line in content:
    if line['input'] == '':
        prompt = PROMPT_DICT['prompt_no_input'].format_map(line)
    else:
        prompt = PROMPT_DICT['prompt_input'].format_map(line)
    completion = line['output']+'</s>'
    if len(prompt) + len(completion) < MAX_LENGTH:
        pairs.append({'prompt':prompt, 'completion':completion})

class AlpacaDataset(Dataset):
    def __init__(self, pairs, tokenizer) -> None:
        super().__init__()
        self.pairs = pairs
        self.tokenizer = tokenizer
 
    def __getitem__(self, index):
        if self.pairs[index]['completion'][-4:] == '</s>':
            prompt = self.tokenizer.encode(self.pairs[index]['prompt'])
            completion = self.tokenizer.encode(self.pairs[index]['completion'][:-4], add_special_tokens=False)
            completion += [EOS_ID]
        else:
            prompt = self.tokenizer.encode(self.pairs[index]['prompt'])
            completion = self.tokenizer.encode(self.pairs[index]['completion'], add_special_tokens=False)
        if 150001 not in prompt:
            prompt = self.pairs[index]['prompt'].replace('[MASK]', '//MASK//').replace('[gMASK]', '//gMASK//')
            completion = self.pairs[index]['completion'].replace('[MASK]', '//MASK//').replace('[gMASK]', '//gMASK//')
            prompt = self.tokenizer.encode(prompt)
            completion = self.tokenizer.encode(completion, add_special_tokens=False)
            if 150001 not in prompt:
                import pdb; pdb.set_trace()
        return {'prompt':prompt, 'completion':completion}

    def __len__(self):
        return len(self.pairs)

def collate_fn(batch):
    input_ids = []
    labels = []
    position_ids = []
    device='cuda:0'
    _max_length = max([len(obj['prompt'])+len(obj['completion']) for obj in batch])
    attention_mask = torch.ones((len(batch), _max_length, _max_length), device=device)
    attention_mask.tril_()

    for i, obj in enumerate(batch):
        context_length = obj['prompt'].index(150004)
        attention_mask[i, :, :context_length] = 1

        to_pad = _max_length - len(obj['prompt']) - len(obj['completion'])

        input_ids.append(obj['prompt'] + obj['completion'] + [tokenizer.pad_token_id] * to_pad)

        position_ids.append(torch.stack(
            [torch.arange(0, _max_length, device=device), 
            torch.concat([torch.zeros(context_length - 1, device=device), 
            torch.arange(0, _max_length - context_length + 1, device=device)])]).long()
        )
        labels.append(torch.tensor([-100] * len(obj['prompt']) + obj['completion'] + [-100] * to_pad, device=device).long())
    attention_mask.unsqueeze_(1)
    attention_mask = (attention_mask < 0.5).bool()
    return {'input_ids': torch.tensor(input_ids).long(), 
            'attention_mask': attention_mask, 
            'labels': torch.stack(labels),
            'position_ids':torch.stack(position_ids)}

train_dataset = AlpacaDataset(pairs,tokenizer=tokenizer,)
train_dataloader = DataLoader(dataset=train_dataset, collate_fn = collate_fn, shuffle=True, batch_size=Per_GPU_BATCH_SIZE)

# check
for step, batch in enumerate(t:=tqdm.tqdm(train_dataloader)):
    pass

model = AutoModel.from_pretrained(
    checkpoint, 
    trust_remote_code=True,
)
deepspeed_plugin = DeepSpeedPlugin(zero_stage=2, gradient_accumulation_steps=accumulate_step)
accelerator = Accelerator(mixed_precision=mixed_precision, gradient_accumulation_steps=accumulate_step, deepspeed_plugin=deepspeed_plugin)
device = accelerator.device


### Insert LoRA to model
class QKV_layer(torch.nn.Module):
    def __init__(self, in_features, out_features):
        super(QKV_layer, self).__init__()
        self.linear_q = torch.nn.Linear(in_features, out_features//3)
        self.linear_k = torch.nn.Linear(in_features, out_features//3)
        self.linear_v = torch.nn.Linear(in_features, out_features//3)

    def update(self, target_layer):
        self.linear_q.weight.data = target_layer.weight[:target_layer.out_features//3, :].data
        self.linear_q.bias.data = target_layer.bias[:target_layer.out_features//3].data

        self.linear_k.weight.data = target_layer.weight[target_layer.out_features//3:target_layer.out_features//3*2, :].data
        self.linear_k.bias.data = target_layer.bias[target_layer.out_features//3:target_layer.out_features//3*2].data

        self.linear_v.weight.data = target_layer.weight[target_layer.out_features//3*2:, :].data
        self.linear_v.bias.data = target_layer.bias[target_layer.out_features//3*2:].data
    
    def forward(self, x):
        q = self.linear_q(x)
        k = self.linear_k(x)
        v = self.linear_v(x)
        return torch.concat([q,k,v], dim = -1)

for key, module in model.named_modules():
    if key.endswith('attention'):
        if isinstance(module.query_key_value, peft.tuners.lora.LoraModel):
            module.query_key_value = peft.tuners.lora.LoraModel(config, module.query_key_value.model)
        else:
            # Here we split the query_key_value layer into three linear layer for LoRA. But you can also use merged linear.
            qkv_layer = QKV_layer(module.query_key_value.in_features, module.query_key_value.out_features) 
            qkv_layer.update(module.query_key_value)
            module.query_key_value = qkv_layer
            module.query_key_value = peft.tuners.lora.LoraModel(config, module.query_key_value)

lora.mark_only_lora_as_trainable(model)

model_parameters = filter(lambda p: p.requires_grad, model.parameters())
trainable_params = sum([np.prod(p.size()) for p in model_parameters])
non_trainable_params = sum([np.prod(p.size()) for p in model_parameters])
print('trainable_params:{} ({:.2f}%), non_trainable_params:{}'.format(
    trainable_params, trainable_params/non_trainable_params*100,non_trainable_params
))

### Training

optimizer = torch.optim.AdamW(model.parameters(), lr=LR)
lr_scheduler = get_linear_schedule_with_warmup(
    optimizer=optimizer,
    num_warmup_steps=int(len(train_dataloader) / accumulate_step * warm_up_ratio),
    num_training_steps=(int(len(train_dataloader) / accumulate_step) * NUM_EPOCHS),
)
model, optimizer, train_dataloader = accelerator.prepare(model, optimizer, train_dataloader)
model.to(device).train()

for epoch in range(NUM_EPOCHS):
    total_loss = 0
    for step, batch in enumerate(t:=tqdm.tqdm(train_dataloader)):
        with accelerator.accumulate(model):
            outputs = model(**batch)
            loss_detach = outputs.loss.detach().cpu().float()
            # t.set_description(f"loss: {loss_detach}")
            t.set_postfix(loss=loss_detach.item())
            total_loss += loss_detach
            loss = outputs.loss

            if accelerator.is_main_process:
                if step % log_interval == 0:
                    wandb.log({
                        'train/loss': loss_detach.item(),
                    })

            accelerator.backward(loss)
            optimizer.step()
            lr_scheduler.step()
            optimizer.zero_grad()

    accelerator.wait_for_everyone()
    if accelerator.is_main_process:
        peft_model_id = f"finetune_{epoch}"
        accelerator.save(lora.lora_state_dict(accelerator.unwrap_model(model)), f'{out_dir}/{peft_model_id}.pt')