File size: 6,515 Bytes
fa6856c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import os
import sys
import wandb
import torch
import torch.nn as nn
import bitsandbytes as bnb
from datasets import load_dataset
import transformers
import argparse
from transformers import LlamaForCausalLM, LlamaTokenizer
from peft import (
    prepare_model_for_int8_training,
    LoraConfig,
    get_peft_model,
    get_peft_model_state_dict,
)

# Used for chitchat dataset
# 用于闲聊对话数据

parser = argparse.ArgumentParser()
parser.add_argument("--wandb", action="store_true", default=False)
parser.add_argument("--data_path", type=str, default="datasets/chitchat-1e5.json") # for example: LCCC 
parser.add_argument("--output_path", type=str, default="outs/13B")
parser.add_argument("--model_path", type=str, default="../model/13B_hf")
parser.add_argument("--eval_steps", type=int, default=200)
parser.add_argument("--save_steps", type=int, default=200)
parser.add_argument("--test_size", type=int, default=0)
args = parser.parse_args()
# optimized for RTX 4090. for larger GPUs, increase some of these?
MICRO_BATCH_SIZE = 24  # this could actually be 5 but i like powers of 2
BATCH_SIZE = 128
GRADIENT_ACCUMULATION_STEPS = BATCH_SIZE // MICRO_BATCH_SIZE
EPOCHS = 2  # we don't always need 3 tbh
LEARNING_RATE = 3e-4  # the Karpathy constant
CUTOFF_LEN = 341  # max:341
LORA_R = 8
LORA_ALPHA = 16
LORA_DROPOUT = 0.05
VAL_SET_SIZE = args.test_size #2000
TARGET_MODULES = [
    "q_proj",
    "v_proj",
]
DATA_PATH = args.data_path 
OUTPUT_DIR = args.output_path #"lora-Vicuna"

device_map = "auto"
world_size = int(os.environ.get("WORLD_SIZE", 1))
ddp = world_size != 1
if ddp:
    device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)}
    GRADIENT_ACCUMULATION_STEPS = GRADIENT_ACCUMULATION_STEPS // world_size
if args.wandb:
    wandb.login(key = '41327ad68395c1a5e5e3827fa5ee97944740250d') # luzhenyi
    wandb.init(
        project="LoRA",
        name=f"{args.model_path}-{args.data_path}",
        config=None,
    )
else:
    wandb.init(mode='disabled')

tokenizer = LlamaTokenizer.from_pretrained(
    args.model_path, add_eos_token=True
)
tokenizer.pad_token_id = 0  # unk. we want this to be different from the eos token
data = load_dataset("json", data_files=DATA_PATH)

PROMPT_DICT = {
    "prompt_input": (
        "Below is an instruction that describes a task, paired with an input that provides further context. "
        "Write a response that appropriately completes the request.\n\n"
        "### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:"
    ),
    "prompt_no_input": (
        "Below is an instruction that describes a task. "
        "Write a response that appropriately completes the request.\n\n"
        "### Instruction:\n{instruction}\n\n### Response:"
    ),
}
CHAT_DICT = {
    'prompt': (
        "The following is a conversation between an AI assistant called Bot and a human user called User."
        "Bot is is intelligent, knowledgeable, wise and polite.\n\n"
    ),
    'history': (
        "User:\n{input}\n\nBot:{output}\n\n"
    ),
    'input': (
        "### User:\n{input}\n\n### Bot:"
    )
}

def tokenize(prompt):
    # there's probably a way to do this with the tokenizer settings
    # but again, gotta move fast
    result = tokenizer(
        prompt,
        truncation=True,
        max_length=CUTOFF_LEN + 1,
        padding="max_length",
    )
    return {
        "input_ids": result["input_ids"][:-1],
        "attention_mask": result["attention_mask"][:-1],
    }
def generate_and_tokenize_prompt(data_point):
    # This function masks out the labels for the input,
    # so that our loss is computed only on the response.
    user_prompt = CHAT_DICT['prompt']
    for history in data_point['history']:
        user_prompt+= CHAT_DICT['history'].format_map(history) 
    user_prompt += CHAT_DICT['input'].format_map(data_point)
    len_user_prompt_tokens = (len(tokenizer(
        user_prompt,
        truncation=True,
        max_length=CUTOFF_LEN + 1,
    )["input_ids"])- 1)  # no eos token
    full_tokens = tokenizer(
        user_prompt + data_point["output"],
        truncation=True,
        max_length=CUTOFF_LEN + 1,
        padding="max_length", # pad到最长
    )["input_ids"][:-1]
    return {
        "input_ids": full_tokens,
        "labels": [-100] * len_user_prompt_tokens + full_tokens[len_user_prompt_tokens:],
        "attention_mask": [1] * (len(full_tokens)),
    }

if VAL_SET_SIZE > 0:
    train_val = data["train"].train_test_split(
        test_size=VAL_SET_SIZE, shuffle=True, seed=42
    )
    train_data = train_val["train"].shuffle().map(generate_and_tokenize_prompt,num_proc=12)
    val_data = train_val["test"].shuffle().map(generate_and_tokenize_prompt,num_proc=12)
else:
    train_data = data["train"].shuffle().map(generate_and_tokenize_prompt,num_proc=12)
    val_data = None

model = LlamaForCausalLM.from_pretrained(
    args.model_path,
    load_in_8bit=True,
    device_map=device_map,
)

model = prepare_model_for_int8_training(model)

config = LoraConfig(
    r=LORA_R,
    lora_alpha=LORA_ALPHA,
    target_modules=TARGET_MODULES,
    lora_dropout=LORA_DROPOUT,
    bias="none",
    task_type="CAUSAL_LM",
)
model = get_peft_model(model, config)

trainer = transformers.Trainer(
    model=model,
    train_dataset=train_data,
    eval_dataset=val_data,
    args=transformers.TrainingArguments(
        per_device_train_batch_size=MICRO_BATCH_SIZE,
        gradient_accumulation_steps=GRADIENT_ACCUMULATION_STEPS,
        warmup_steps=100,
        num_train_epochs=EPOCHS,
        learning_rate=LEARNING_RATE,
        fp16=True,
        logging_steps=20,
        evaluation_strategy="steps" if VAL_SET_SIZE > 0 else "no",
        save_strategy="steps",
        eval_steps=args.eval_steps if VAL_SET_SIZE > 0 else None,
        save_steps=args.save_steps,
        output_dir=OUTPUT_DIR,
        load_best_model_at_end=True if VAL_SET_SIZE > 0 else False,
        ddp_find_unused_parameters=False if ddp else None,
        report_to="wandb" if args.wandb else [],
    ),
    data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False),
)
model.config.use_cache = False

old_state_dict = model.state_dict
model.state_dict = (
    lambda self, *_, **__: get_peft_model_state_dict(self, old_state_dict())
).__get__(model, type(model))

if torch.__version__ >= "2" and sys.platform != "win32":
    model = torch.compile(model)

trainer.train()
model.save_pretrained(OUTPUT_DIR)
print("\n If there's a warning about missing keys above, please disregard :)")