Spaces:
Runtime error
Runtime error
File size: 8,025 Bytes
fa6856c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
# This file is adapted from: https://github.com/tloen/alpaca-lora ( for merge ) and https://gist.github.com/benob/4850a0210b01672175942203aa36d300 ( for shard )
# It can merge the LoRA weights back into the base model for export to PyTorch state_dicts (`consolidated.0x.pth`). The number of shards is according to the user command argument.
# They should help users who want to run inference in projects like llama.cpp or alpaca.cpp.
import os
import json
import torch
from peft import PeftModel, LoraConfig
import argparse
import transformers
# args
parser = argparse.ArgumentParser()
# The original base model checkpoint dir
parser.add_argument("--model_path", type=str, default='decapoda-research/llama-7b-hf')
# The finetuned lora model checkpoint dir
parser.add_argument("--lora_path",type=str, default='./lora-Vicuna/checkpoint-3000')
# The output dir
parser.add_argument("--out_path", type=str, default='./lora-Vicuna/checkpoint-3000-with-lora')
parser.add_argument("--num_shards", type=int, default=None)
args = parser.parse_args()
#
assert (
"LlamaTokenizer" in transformers._import_structure["models.llama"]
), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git"
from transformers import LlamaTokenizer, LlamaForCausalLM
params = {
'65B': {"dim": 8192, "multiple_of": 256, "n_heads": 64, "n_layers": 80, "norm_eps": 1e-06, "vocab_size": -1},
'30B': {"dim": 6656, "multiple_of": 256, "n_heads": 52, "n_layers": 60, "norm_eps": 1e-06, "vocab_size": -1},
'13B': {"dim": 5120, "multiple_of": 256, "n_heads": 40, "n_layers": 40, "norm_eps": 1e-06, "vocab_size": -1},
'7B': {"dim": 4096, "multiple_of": 256, "n_heads": 32, "n_layers": 32, "norm_eps": 1e-06, "vocab_size": -1},
}
NUM_SHARDS = {
"7B": 1,
"13B": 2,
"30B": 4,
"65B": 8,
}
layer_kind = {
'tok_embeddings': 'ParallelEmbedding',
'output': 'ColumnParallelLinear',
'attention.wq': 'ColumnParallelLinear',
'attention.wk': 'ColumnParallelLinear',
'attention.wv': 'ColumnParallelLinear',
'attention.wo': 'RowParallelLinear',
'feed_forward.w1': 'ColumnParallelLinear',
'feed_forward.w2': 'RowParallelLinear',
'feed_forward.w3': 'ColumnParallelLinear',
'attention_norm': None,
'ffn_norm': None,
'norm': None,
'rope.freqs': None,
}
print(f">>> load model from {args.model_path} and lora from {args.lora_path}....")
tokenizer = LlamaTokenizer.from_pretrained(args.model_path)
base_model = LlamaForCausalLM.from_pretrained(
args.model_path,
load_in_8bit=False,
torch_dtype=torch.float16,
device_map={"": "cpu"},
)
lora_model = PeftModel.from_pretrained(
base_model,
args.lora_path,
device_map={"": "cpu"},
torch_dtype=torch.float16,
)
# merge weights
for layer in lora_model.base_model.model.model.layers:
layer.self_attn.q_proj.merge_weights = True
layer.self_attn.v_proj.merge_weights = True
lora_model.train(False)
lora_model_sd = lora_model.state_dict()
n_layers = base_model.config.num_hidden_layers
model_size = None
for size in params.keys():
if n_layers == params[size]["n_layers"]:
model_size = size
print(f">>> automatically recognize model_size={size}")
if model_size is None:
raise Exception('cannot recognize model_size! please check if your model is llama-based model')
n_heads = base_model.config.num_attention_heads
assert n_heads == params[model_size]["n_heads"]
dim = base_model.config.hidden_size
assert dim == params[model_size]["dim"]
dims_per_head = dim // n_heads
base = 10000.0
inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head))
if args.num_shards is None:
num_shards = NUM_SHARDS[model_size]
else:
num_shards = args.num_shards
print(f'>>> will split model checkpoint in {num_shards} parts')
def permute(w):
return (
w.view(n_heads, dim // n_heads // 2, 2, dim).transpose(1, 2).reshape(dim, dim)
)
def unpermute(w):
return (
w.view(n_heads, 2, dim // n_heads // 2, dim).transpose(1, 2).reshape(dim, dim)
)
def translate_state_dict_key(k):
k = k.replace("base_model.model.", "")
if k == "model.embed_tokens.weight":
return "tok_embeddings.weight"
elif k == "model.norm.weight":
return "norm.weight"
elif k == "lm_head.weight":
return "output.weight"
elif k.startswith("model.layers."):
layer = k.split(".")[2]
if k.endswith(".self_attn.q_proj.weight"):
return f"layers.{layer}.attention.wq.weight"
elif k.endswith(".self_attn.k_proj.weight"):
return f"layers.{layer}.attention.wk.weight"
elif k.endswith(".self_attn.v_proj.weight"):
return f"layers.{layer}.attention.wv.weight"
elif k.endswith(".self_attn.o_proj.weight"):
return f"layers.{layer}.attention.wo.weight"
elif k.endswith(".mlp.gate_proj.weight"):
return f"layers.{layer}.feed_forward.w1.weight"
elif k.endswith(".mlp.down_proj.weight"):
return f"layers.{layer}.feed_forward.w2.weight"
elif k.endswith(".mlp.up_proj.weight"):
return f"layers.{layer}.feed_forward.w3.weight"
elif k.endswith(".input_layernorm.weight"):
return f"layers.{layer}.attention_norm.weight"
elif k.endswith(".post_attention_layernorm.weight"):
return f"layers.{layer}.ffn_norm.weight"
elif k.endswith("rotary_emb.inv_freq") or "lora" in k:
return None
else:
print(layer, k)
raise NotImplementedError
else:
print(k)
raise NotImplementedError
new_state_dict = {}
for k, v in lora_model_sd.items():
new_k = translate_state_dict_key(k)
if new_k is not None:
if "wq" in new_k or "wk" in new_k:
new_state_dict[new_k] = unpermute(v)
else:
new_state_dict[new_k] = v
os.makedirs(args.out_path, exist_ok=True)
if num_shards == 1:
torch.save(new_state_dict, f"{args.out_path}/consolidated.00.pth")
with open(f"{args.out_path}/params.json", "w") as f:
json.dump(params[model_size], f)
else:
output = [dict() for x in range(num_shards)]
print('>>> start converting to shards...')
# sharded the models
for key in new_state_dict.keys():
tensors = [new_state_dict[key]]
print(key)
print(' in shapes=', [p.shape for p in tensors])
for pattern, kind in layer_kind.items():
if key.replace('.weight', '').endswith(pattern):
print(' kind=', kind)
if kind == 'ColumnParallelLinear':
with torch.no_grad():
merged = torch.cat(tensors, 0)
slice_size = merged.shape[0] // num_shards
for rank in range(num_shards):
output[rank][key] = merged[slice_size * rank: slice_size * (rank + 1),:].clone().detach()
elif kind in ('ParallelEmbedding', 'RowParallelLinear'):
with torch.no_grad():
merged = torch.cat(tensors, 1)
slice_size = merged.shape[1] // num_shards
for rank in range(num_shards):
output[rank][key] = merged[:,slice_size * rank: slice_size * (rank + 1)].clone().detach()
else:
for rank in range(num_shards):
output[rank][key] = tensors[0]
print(' out shapes=', [output[rank][key].shape for rank in range(num_shards)])
print()
break
print('saving...')
with open(os.path.join(args.out_path, 'params.json'), 'w') as fp:
fp.write(json.dumps(params))
for rank in range(num_shards):
print(' ', rank)
torch.save(output[rank], os.path.join(args.out_path, 'consolidated.%02d.pth' % rank))
print('done.')
|