File size: 8,025 Bytes
fa6856c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
# This file is adapted from: https://github.com/tloen/alpaca-lora ( for merge ) and https://gist.github.com/benob/4850a0210b01672175942203aa36d300 ( for shard )
# It can merge the LoRA weights back into the base model for export to PyTorch state_dicts (`consolidated.0x.pth`). The number of shards is according to the user command argument. 
# They should help users who want to run inference in projects like llama.cpp or alpaca.cpp.

import os
import json
import torch
from peft import PeftModel, LoraConfig
import argparse
import transformers

# args
parser = argparse.ArgumentParser()
# The original base model checkpoint dir
parser.add_argument("--model_path", type=str, default='decapoda-research/llama-7b-hf')
# The finetuned lora model checkpoint dir
parser.add_argument("--lora_path",type=str, default='./lora-Vicuna/checkpoint-3000')
# The output dir
parser.add_argument("--out_path", type=str, default='./lora-Vicuna/checkpoint-3000-with-lora')
parser.add_argument("--num_shards", type=int, default=None)
args = parser.parse_args()

# 
assert (
    "LlamaTokenizer" in transformers._import_structure["models.llama"]
), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git"
from transformers import LlamaTokenizer, LlamaForCausalLM

params = {
    '65B':  {"dim": 8192, "multiple_of": 256, "n_heads": 64, "n_layers": 80, "norm_eps": 1e-06, "vocab_size": -1},
    '30B': {"dim": 6656, "multiple_of": 256, "n_heads": 52, "n_layers": 60, "norm_eps": 1e-06, "vocab_size": -1},
    '13B': {"dim": 5120, "multiple_of": 256, "n_heads": 40, "n_layers": 40, "norm_eps": 1e-06, "vocab_size": -1},
    '7B':  {"dim": 4096, "multiple_of": 256, "n_heads": 32, "n_layers": 32, "norm_eps": 1e-06, "vocab_size": -1},
}
NUM_SHARDS = {
    "7B": 1,
    "13B": 2,
    "30B": 4,
    "65B": 8,
}
layer_kind = {
    'tok_embeddings': 'ParallelEmbedding',
    'output': 'ColumnParallelLinear',
    'attention.wq': 'ColumnParallelLinear',
    'attention.wk': 'ColumnParallelLinear',
    'attention.wv': 'ColumnParallelLinear',
    'attention.wo': 'RowParallelLinear',
    'feed_forward.w1': 'ColumnParallelLinear',
    'feed_forward.w2': 'RowParallelLinear',
    'feed_forward.w3': 'ColumnParallelLinear',
    'attention_norm': None,
    'ffn_norm': None,
    'norm': None,
    'rope.freqs': None,
}

print(f">>> load model from {args.model_path} and lora from {args.lora_path}....")
tokenizer = LlamaTokenizer.from_pretrained(args.model_path)
base_model = LlamaForCausalLM.from_pretrained(
    args.model_path,
    load_in_8bit=False,
    torch_dtype=torch.float16,
    device_map={"": "cpu"},
)
lora_model = PeftModel.from_pretrained(
    base_model,
    args.lora_path,
    device_map={"": "cpu"},
    torch_dtype=torch.float16,
)

# merge weights
for layer in lora_model.base_model.model.model.layers:
    layer.self_attn.q_proj.merge_weights = True
    layer.self_attn.v_proj.merge_weights = True

lora_model.train(False)

lora_model_sd = lora_model.state_dict()

n_layers = base_model.config.num_hidden_layers
model_size = None
for size in params.keys():
    if n_layers == params[size]["n_layers"]:
        model_size = size
        print(f">>> automatically recognize model_size={size}")
if model_size is None:
    raise Exception('cannot recognize model_size! please check if your model is llama-based model')
n_heads = base_model.config.num_attention_heads
assert n_heads == params[model_size]["n_heads"]
dim = base_model.config.hidden_size
assert dim == params[model_size]["dim"]
dims_per_head = dim // n_heads
base = 10000.0
inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head))
if args.num_shards is None:
    num_shards = NUM_SHARDS[model_size]
else:
    num_shards = args.num_shards
print(f'>>> will split model checkpoint in {num_shards} parts')

def permute(w):
    return (
        w.view(n_heads, dim // n_heads // 2, 2, dim).transpose(1, 2).reshape(dim, dim)
    )


def unpermute(w):
    return (
        w.view(n_heads, 2, dim // n_heads // 2, dim).transpose(1, 2).reshape(dim, dim)
    )


def translate_state_dict_key(k):
    k = k.replace("base_model.model.", "")
    if k == "model.embed_tokens.weight":
        return "tok_embeddings.weight"
    elif k == "model.norm.weight":
        return "norm.weight"
    elif k == "lm_head.weight":
        return "output.weight"
    elif k.startswith("model.layers."):
        layer = k.split(".")[2]
        if k.endswith(".self_attn.q_proj.weight"):
            return f"layers.{layer}.attention.wq.weight"
        elif k.endswith(".self_attn.k_proj.weight"):
            return f"layers.{layer}.attention.wk.weight"
        elif k.endswith(".self_attn.v_proj.weight"):
            return f"layers.{layer}.attention.wv.weight"
        elif k.endswith(".self_attn.o_proj.weight"):
            return f"layers.{layer}.attention.wo.weight"
        elif k.endswith(".mlp.gate_proj.weight"):
            return f"layers.{layer}.feed_forward.w1.weight"
        elif k.endswith(".mlp.down_proj.weight"):
            return f"layers.{layer}.feed_forward.w2.weight"
        elif k.endswith(".mlp.up_proj.weight"):
            return f"layers.{layer}.feed_forward.w3.weight"
        elif k.endswith(".input_layernorm.weight"):
            return f"layers.{layer}.attention_norm.weight"
        elif k.endswith(".post_attention_layernorm.weight"):
            return f"layers.{layer}.ffn_norm.weight"
        elif k.endswith("rotary_emb.inv_freq") or "lora" in k:
            return None
        else:
            print(layer, k)
            raise NotImplementedError
    else:
        print(k)
        raise NotImplementedError


new_state_dict = {}
for k, v in lora_model_sd.items():
    new_k = translate_state_dict_key(k)
    if new_k is not None:
        if "wq" in new_k or "wk" in new_k:
            new_state_dict[new_k] = unpermute(v)
        else:
            new_state_dict[new_k] = v

os.makedirs(args.out_path, exist_ok=True)
if num_shards == 1:
    torch.save(new_state_dict, f"{args.out_path}/consolidated.00.pth")
    with open(f"{args.out_path}/params.json", "w") as f:
        json.dump(params[model_size], f)
else:
    output = [dict() for x in range(num_shards)]
    print('>>> start converting to shards...')
    # sharded the models
    for key in new_state_dict.keys():
        tensors = [new_state_dict[key]]
        print(key)
        print('  in shapes=', [p.shape for p in tensors])
        for pattern, kind in layer_kind.items():
            if key.replace('.weight', '').endswith(pattern):
                print('  kind=', kind)
                if kind == 'ColumnParallelLinear':
                    with torch.no_grad():
                        merged = torch.cat(tensors, 0)
                        slice_size = merged.shape[0] // num_shards
                        for rank in range(num_shards):
                            output[rank][key] = merged[slice_size * rank: slice_size * (rank + 1),:].clone().detach()
                elif kind in ('ParallelEmbedding', 'RowParallelLinear'):
                    with torch.no_grad():
                        merged = torch.cat(tensors, 1)
                        slice_size = merged.shape[1] // num_shards
                        for rank in range(num_shards):
                            output[rank][key] = merged[:,slice_size * rank: slice_size * (rank + 1)].clone().detach()
                else:
                    for rank in range(num_shards):
                        output[rank][key] = tensors[0]
                print('  out shapes=', [output[rank][key].shape for rank in range(num_shards)])
                print()
                break
    print('saving...')
    
    with open(os.path.join(args.out_path, 'params.json'), 'w') as fp:
        fp.write(json.dumps(params))
    
    for rank in range(num_shards):
        print(' ', rank)
        torch.save(output[rank], os.path.join(args.out_path, 'consolidated.%02d.pth' % rank))

    print('done.')