chatlawv1 / trlx /configs /nemo_configs /megatron_20b.yaml
teachyourselfcoding's picture
Upload 245 files
fa6856c
raw
history blame
5.71 kB
name: megatron_gpt_20b
restore_from_path: null # used when starting from a .nemo file
trainer:
devices: 8
num_nodes: 4
accelerator: gpu
precision: bf16
logger: False # logger provided by exp_manager
enable_checkpointing: False
replace_sampler_ddp: False
max_epochs: -1 # PTL default. In practice, max_steps will be reached first.
max_steps: 200 # consumed_samples = global_step * micro_batch_size * data_parallel_size * accumulate_grad_batches
log_every_n_steps: 1
val_check_interval: 20
# check_val_every_n_epoch: null
limit_val_batches: 2
limit_test_batches: 0
accumulate_grad_batches: 1 # do not modify, grad acc is automatic for training megatron models
gradient_clip_val: 1.0
benchmark: False
exp_manager:
# set this to save checkpoints
explicit_log_dir: ppo_sentiments_logs
exp_dir: null
name: megatron_gpt_20b_ppo_sentiments
create_tensorboard_logger: False
create_wandb_logger: False
wandb_logger_kwargs:
project: trlxnemo
name: megatron_gpt_20b_ppo_sentiments
resume_if_exists: False
resume_ignore_no_checkpoint: True
# set this to save checkpoints
create_checkpoint_callback: False
checkpoint_callback_params:
monitor: reduced_train_loss
save_top_k: 1
mode: min
always_save_nemo: False # saves nemo file during validation, not implemented for model parallel
save_nemo_on_train_end: True # not recommended when training large models on clusters with short time limits
filename: 'megatron_gpt-{reduced_train_loss:.2f}-{step}-{consumed_samples}'
model_parallel_size: ${multiply:${model.tensor_model_parallel_size}, ${model.pipeline_model_parallel_size}}
log_step_timing: True
step_timing_kwargs:
sync_cuda: True
buffer_size: 5
model:
micro_batch_size: 2
global_batch_size: 64
tensor_model_parallel_size: 4
pipeline_model_parallel_size: 1
resume_from_checkpoint: null # manually set the checkpoint file to load from
# model architecture
encoder_seq_length: 2048
max_position_embeddings: 2048
num_layers: 44
hidden_size: 6144
ffn_hidden_size: ${multiply:4, ${.hidden_size}} # Transformer FFN hidden size. 4 * hidden_size.
num_attention_heads: 48
init_method_std: 0.007 # Standard deviation of the zero mean normal distribution used for weight initialization.')
hidden_dropout: 0.1 # Dropout probability for hidden state transformer.
kv_channels: null # Projection weights dimension in multi-head attention. Set to hidden_size // num_attention_heads if null
apply_query_key_layer_scaling: True # scale Q * K^T by 1 / layer-number.
layernorm_epsilon: 1e-5
make_vocab_size_divisible_by: 128 # Pad the vocab size to be divisible by this value for computation efficiency.
pre_process: True # add embedding
post_process: True # add pooler
persist_layer_norm: True # Use of persistent fused layer norm kernel.
grad_div_ar_fusion: True # Fuse grad division into torch.distributed.all_reduce
gradient_accumulation_fusion: True # Fuse weight gradient accumulation to GEMMs
## Activation Checkpointing
activations_checkpoint_granularity: 'selective' #'selective' # 'selective' or 'full'
activations_checkpoint_method: 'uniform' # 'uniform', 'block', not used with 'selective'
activations_checkpoint_num_layers: null # not used with 'selective'
## Sequence Parallelism
sequence_parallel: True
tokenizer:
library: 'megatron'
type: 'GPT2BPETokenizer'
model: null
vocab_file: null
merge_file: null
delimiter: null # only used for tabular tokenizer
sentencepiece_legacy: false # Legacy=True allows you to add special tokens to sentencepiece tokenizers.
# precision
native_amp_init_scale: 4294967296 # 2 ** 32
native_amp_growth_interval: 1000
hysteresis: 2 # Gradient scale hysteresis
fp32_residual_connection: False # Move residual connections to fp32
fp16_lm_cross_entropy: False # Move the cross entropy unreduced loss calculation for lm head to fp16
# Megatron O2-style half-precision
megatron_amp_O2: True # Enable O2-level automatic mixed precision using main parameters
grad_allreduce_chunk_size_mb: 125
sync_batch_comm: False
# miscellaneous
seed: 1234
use_cpu_initialization: False # Init weights on the CPU (slow for large models)
onnx_safe: False # Use work-arounds for known problems with Torch ONNX exporter.
apex_transformer_log_level: 30 # Python logging level displays logs with severity greater than or equal to this
gradient_as_bucket_view: True # PyTorch DDP argument. Allocate gradients in a contiguous bucket to save memory (less fragmentation and buffer memory)
data:
data_prefix:
- dataset: hh
index_mapping_dir: null # path to save index mapping .npy files, by default will save in the same location as data_prefix
data_impl: mmap
splits_string: 900,50,50
seq_length: ${model.encoder_seq_length}
skip_warmup: True
num_workers: 2
dataloader_type: cyclic
reset_position_ids: False # Reset position ids after end-of-document token
reset_attention_mask: False # Reset attention mask after end-of-document token
eod_mask_loss: False # Mask loss for the end of document tokens
# Nsys profiling options
nsys_profile:
enabled: False
start_step: 10 # Global batch to start profiling
end_step: 10 # Global batch to end profiling
ranks: [0, 4, 8, 12] # Global rank IDs to profile
gen_shape: False # Generate model and kernel details including input shapes
optim:
name: distributed_fused_adam
lr: 6.0e-5
weight_decay: 1.0e-6
betas:
- 0.9
- 0.95
sched:
name: CosineAnnealing
warmup_steps: 0
constant_steps: 10000000
min_lr: 5.0e-5