chatlawv1 / trlx /examples /nemo_ppo_sentiments.py
teachyourselfcoding's picture
Upload 245 files
fa6856c
raw
history blame
3.67 kB
# Generates positive movie reviews by tuning a pretrained model on IMDB dataset
# with a sentiment reward function
import json
import os
import sys
from typing import List
from datasets import load_dataset
from transformers import DistilBertForSequenceClassification, pipeline
import trlx
from trlx.data.default_configs import (
TRLConfig,
default_nemo_1_3b_config,
default_nemo_2b_config,
default_nemo_20b_config,
default_ppo_config,
)
def get_positive_score(scores):
"Extract value associated with a positive sentiment from pipeline's output"
return dict(map(lambda x: tuple(x.values()), scores))["POSITIVE"]
def main(hparams={}):
# Merge sweep config with default config if given
default_config = TRLConfig.update(default_ppo_config().to_dict(), hparams)
cfg_name = os.environ.get("NEMO_CONFIG", "1.3B")
if cfg_name == "1.3B":
nemo_config = default_nemo_1_3b_config()
elif cfg_name == "2B":
nemo_config = default_nemo_2b_config()
elif cfg_name == "20B":
nemo_config = default_nemo_20b_config()
else:
raise ValueError(f"Unknown NEMO_CONFIG: {cfg_name}")
config = default_config.evolve(
train=dict(
total_steps=512,
seq_length=2048,
batch_size=32,
epochs=100,
eval_interval=64,
trainer="NeMoPPOTrainer",
trainer_kwargs=dict(
pretrained_model=f"/mnt/hdd/nemo-megatron-gpt-{cfg_name}/",
megatron_cfg=nemo_config,
),
checkpoint_interval=256,
checkpoint_dir=f"nemo_{cfg_name}_ppo_sentiments",
seed=2023,
project_name="trlxnemo",
tags=["nemo", "ppo", "sentiments", cfg_name],
),
optimizer=dict(
name="distributed_fused_adam",
kwargs=dict(
lr=6.001e-5,
weight_decay=1e-06,
eps=1.0e-8,
betas=(0.9, 0.95),
),
),
scheduler=dict(
name="CosineAnnealing",
),
model=dict(num_layers_unfrozen=2),
method=dict(
num_rollouts=128,
init_kl_coef=0.05,
scale_reward="ref",
vf_coef=1,
gen_kwargs=dict(temperature=1.0, max_new_tokens=40),
chunk_size=128,
ppo_epochs=4,
),
)
config.scheduler.kwargs = dict(warmup_steps=0, constant_steps=1e12, min_lr=6.0e-5)
rank = int(os.environ["SLURM_PROCID"])
local_rank = rank % 8
reward_model = DistilBertForSequenceClassification.from_pretrained("lvwerra/distilbert-imdb")
reward_model.to(local_rank)
sentiment_fn = pipeline(
"sentiment-analysis",
model=reward_model, # "lvwerra/distilbert-imdb",
tokenizer="lvwerra/distilbert-imdb",
top_k=2,
truncation=True,
batch_size=256,
device=local_rank,
)
def reward_fn(samples: List[str], **kwargs) -> List[float]:
reward_model.to(local_rank)
sentiments = list(map(get_positive_score, sentiment_fn(samples)))
reward_model.to("cpu")
return sentiments
# Take few words off of movies reviews as prompts
imdb = load_dataset("imdb", split="train+test")
prompts = [" ".join(review.split()[:4]) for review in imdb["text"]]
trlx.train(
reward_fn=reward_fn,
prompts=prompts,
eval_prompts=["I don't know much about Hungarian underground"] * 256,
config=config,
)
if __name__ == "__main__":
hparams = {} if len(sys.argv) == 1 else json.loads(sys.argv[1])
main(hparams)