Spaces:
Runtime error
Runtime error
# Generates positive movie reviews by tuning a pretrained model on IMDB dataset | |
# with a sentiment reward function | |
import json | |
import os | |
import sys | |
from typing import List | |
from datasets import load_dataset | |
from transformers import DistilBertForSequenceClassification, pipeline | |
import trlx | |
from trlx.data.default_configs import ( | |
TRLConfig, | |
default_nemo_1_3b_config, | |
default_nemo_2b_config, | |
default_nemo_20b_config, | |
default_ppo_config, | |
) | |
def get_positive_score(scores): | |
"Extract value associated with a positive sentiment from pipeline's output" | |
return dict(map(lambda x: tuple(x.values()), scores))["POSITIVE"] | |
def main(hparams={}): | |
# Merge sweep config with default config if given | |
default_config = TRLConfig.update(default_ppo_config().to_dict(), hparams) | |
cfg_name = os.environ.get("NEMO_CONFIG", "1.3B") | |
if cfg_name == "1.3B": | |
nemo_config = default_nemo_1_3b_config() | |
elif cfg_name == "2B": | |
nemo_config = default_nemo_2b_config() | |
elif cfg_name == "20B": | |
nemo_config = default_nemo_20b_config() | |
else: | |
raise ValueError(f"Unknown NEMO_CONFIG: {cfg_name}") | |
config = default_config.evolve( | |
train=dict( | |
total_steps=512, | |
seq_length=2048, | |
batch_size=32, | |
epochs=100, | |
eval_interval=64, | |
trainer="NeMoPPOTrainer", | |
trainer_kwargs=dict( | |
pretrained_model=f"/mnt/hdd/nemo-megatron-gpt-{cfg_name}/", | |
megatron_cfg=nemo_config, | |
), | |
checkpoint_interval=256, | |
checkpoint_dir=f"nemo_{cfg_name}_ppo_sentiments", | |
seed=2023, | |
project_name="trlxnemo", | |
tags=["nemo", "ppo", "sentiments", cfg_name], | |
), | |
optimizer=dict( | |
name="distributed_fused_adam", | |
kwargs=dict( | |
lr=6.001e-5, | |
weight_decay=1e-06, | |
eps=1.0e-8, | |
betas=(0.9, 0.95), | |
), | |
), | |
scheduler=dict( | |
name="CosineAnnealing", | |
), | |
model=dict(num_layers_unfrozen=2), | |
method=dict( | |
num_rollouts=128, | |
init_kl_coef=0.05, | |
scale_reward="ref", | |
vf_coef=1, | |
gen_kwargs=dict(temperature=1.0, max_new_tokens=40), | |
chunk_size=128, | |
ppo_epochs=4, | |
), | |
) | |
config.scheduler.kwargs = dict(warmup_steps=0, constant_steps=1e12, min_lr=6.0e-5) | |
rank = int(os.environ["SLURM_PROCID"]) | |
local_rank = rank % 8 | |
reward_model = DistilBertForSequenceClassification.from_pretrained("lvwerra/distilbert-imdb") | |
reward_model.to(local_rank) | |
sentiment_fn = pipeline( | |
"sentiment-analysis", | |
model=reward_model, # "lvwerra/distilbert-imdb", | |
tokenizer="lvwerra/distilbert-imdb", | |
top_k=2, | |
truncation=True, | |
batch_size=256, | |
device=local_rank, | |
) | |
def reward_fn(samples: List[str], **kwargs) -> List[float]: | |
reward_model.to(local_rank) | |
sentiments = list(map(get_positive_score, sentiment_fn(samples))) | |
reward_model.to("cpu") | |
return sentiments | |
# Take few words off of movies reviews as prompts | |
imdb = load_dataset("imdb", split="train+test") | |
prompts = [" ".join(review.split()[:4]) for review in imdb["text"]] | |
trlx.train( | |
reward_fn=reward_fn, | |
prompts=prompts, | |
eval_prompts=["I don't know much about Hungarian underground"] * 256, | |
config=config, | |
) | |
if __name__ == "__main__": | |
hparams = {} if len(sys.argv) == 1 else json.loads(sys.argv[1]) | |
main(hparams) | |