Spaces:
Runtime error
Runtime error
import numpy as np | |
import torch | |
import torch.nn as nn | |
from torch.nn import functional as F | |
from torch.cuda.amp import custom_bwd, custom_fwd | |
from transformers.models.llama.modeling_llama import LlamaAttention, apply_rotary_pos_emb | |
from .quant_linear import * | |
class QuantLlamaAttention(nn.Module): | |
"""Multi-headed attention from 'Attention Is All You Need' paper""" | |
def __init__( | |
self, | |
hidden_size, | |
num_heads, | |
qkv_proj, | |
o_proj, | |
rotary_emb, | |
): | |
super().__init__() | |
self.hidden_size = hidden_size | |
self.num_heads = num_heads | |
self.head_dim = hidden_size // num_heads | |
if (self.head_dim * num_heads) != self.hidden_size: | |
raise ValueError(f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" | |
f" and `num_heads`: {num_heads}).") | |
self.qkv_proj = qkv_proj | |
self.o_proj = o_proj | |
self.rotary_emb = rotary_emb | |
def _shape(self, tensor, seq_len, bsz): | |
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() | |
def forward(self, hidden_states, past_key_value=None, attention_mask=None, position_ids=None, output_attentions=False, use_cache=False): | |
"""Input shape: Batch x Time x Channel""" | |
bsz, q_len, _ = hidden_states.size() | |
qkv_states = self.qkv_proj(hidden_states) | |
query_states, key_states, value_states = torch.split(qkv_states, self.hidden_size, dim=2) | |
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
key_states = key_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
value_states = value_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
#transformers==4.29.0: | |
kv_seq_len = key_states.shape[-2] | |
if past_key_value is not None: | |
kv_seq_len += past_key_value[0].shape[-2] | |
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) | |
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) | |
#transformers==4.28.0: | |
# kv_seq_len = key_states.shape[-2] | |
# offset = 0 | |
# if past_key_value is not None: | |
# offset = past_key_value[0].shape[-2] | |
# kv_seq_len += offset | |
# cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) | |
# query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, offset) | |
# [bsz, nh, t, hd] | |
is_causal = past_key_value is None | |
if past_key_value is not None: | |
# reuse k, v, self_attention | |
key_states = torch.cat([past_key_value[0], key_states], dim=2) | |
value_states = torch.cat([past_key_value[1], value_states], dim=2) | |
past_key_value = (key_states, value_states) if use_cache else None | |
with torch.backends.cuda.sdp_kernel(enable_math=False): | |
attn_output = F.scaled_dot_product_attention(query_states, key_states, value_states, is_causal=is_causal) | |
attn_output = attn_output.transpose(1, 2) | |
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) | |
attn_output = self.o_proj(attn_output) | |
if not output_attentions: | |
attn_weights = None | |
return attn_output, attn_weights, past_key_value | |
def make_quant_attn(model): | |
""" | |
Replace all LlamaAttention modules with QuantLlamaAttention modules, fusing the q, k, v projections. | |
""" | |
for name, m in model.named_modules(): | |
if not isinstance(m, LlamaAttention): | |
continue | |
q_proj = m.q_proj | |
k_proj = m.k_proj | |
v_proj = m.v_proj | |
qweights = torch.cat([q_proj.qweight, k_proj.qweight, v_proj.qweight], dim=1) | |
qzeros = torch.cat([q_proj.qzeros, k_proj.qzeros, v_proj.qzeros], dim=1) | |
scales = torch.cat([q_proj.scales, k_proj.scales, v_proj.scales], dim=1) | |
g_idx = torch.cat([q_proj.g_idx, k_proj.g_idx, v_proj.g_idx], dim=0) | |
bias = torch.cat([q_proj.bias, k_proj.bias, v_proj.bias], dim=0) if q_proj.bias is not None else None | |
qkv_layer = QuantLinear(q_proj.bits, q_proj.groupsize, q_proj.infeatures, q_proj.outfeatures + k_proj.outfeatures + v_proj.outfeatures, True if q_proj.bias is not None else False) | |
qkv_layer.qweight = qweights | |
qkv_layer.qzeros = qzeros | |
qkv_layer.scales = scales | |
qkv_layer.g_idx = g_idx | |
qkv_layer.bias = bias | |
attn = QuantLlamaAttention(m.hidden_size, m.num_heads, qkv_layer, m.o_proj, m.rotary_emb) | |
if '.' in name: | |
parent_name = name.rsplit('.', 1)[0] | |
child_name = name[len(parent_name) + 1:] | |
parent = model.get_submodule(parent_name) | |
else: | |
parent_name = '' | |
parent = model | |
child_name = name | |
#print(f"Replacing {name} with quant_attn; parent: {parent_name}, child's name: {child_name}") | |
setattr(parent, child_name, attn) | |