# Generates positive movie reviews by tuning a pretrained model on IMDB dataset # with a sentiment reward function import json import os import sys from typing import List import torch from datasets import load_dataset from transformers import pipeline import trlx from trlx.data.default_configs import TRLConfig, default_ppo_config def get_positive_score(scores): "Extract value associated with a positive sentiment from pipeline's output" return dict(map(lambda x: tuple(x.values()), scores))["POSITIVE"] def get_negative_score(scores): return dict(map(lambda x: tuple(x.values()), scores))["NEGATIVE"] def main(hparams={}): # Merge sweep config with default config if given config = TRLConfig.update(default_ppo_config().to_dict(), hparams) if torch.cuda.is_available(): device = int(os.environ.get("LOCAL_RANK", 0)) else: device = -1 sentiment_fn = pipeline( "sentiment-analysis", "lvwerra/distilbert-imdb", top_k=2, truncation=True, batch_size=256, device=device, ) def dense_reward_fn(samples: List[str], prompts: List[str], outputs: List[str], tokenizer, **kwargs) -> List[float]: # Reward positively for initially negative then positive review # Reward functions should never receive padded text except for a single EOS at the end # Reward function should return token rewards for just the response first_halves = [".".join(sample.split(".")[: len(sample.split(".")) // 2]) for sample in samples] negative_first_halves = list(map(get_negative_score, sentiment_fn(first_halves))) second_halves = [".".join(sample.split(".")[len(sample.split(".")) // 2 :]) for sample in samples] positive_second_halves = list(map(get_positive_score, sentiment_fn(second_halves))) text_scores = [[f, s] for f, s in zip(negative_first_halves, positive_second_halves)] tok_scores = [] for sample, prompt, response, text_score in zip(samples, prompts, outputs, text_scores): toks = tokenizer(response).input_ids tok_score = [0] * len(toks) tok_score[len(tok_score) // 2] = text_score[0] tok_score[-1] = text_score[1] tok_scores.append(tok_score) return tok_scores # Take few words off of movies reviews as prompts imdb = load_dataset("imdb", split="train+test") prompts = [" ".join(review.split()[:4]) for review in imdb["text"]] trlx.train( reward_fn=dense_reward_fn, prompts=prompts, eval_prompts=["I don't know much about Hungarian underground"] * 256, config=config, ) if __name__ == "__main__": hparams = {} if len(sys.argv) == 1 else json.loads(sys.argv[1]) main(hparams)