import json import os import sys from typing import Dict, List from datasets import load_dataset from transformers import pipeline import trlx from trlx.data.default_configs import TRLConfig, default_sft_config def get_positive_score(scores): "Extract value associated with a positive sentiment from pipeline's output" return dict(map(lambda x: tuple(x.values()), scores))["POSITIVE"] def main(hparams={}): # Merge sweep config with default config if given config = TRLConfig.update(default_sft_config().to_dict(), hparams) imdb = load_dataset("imdb", split="train+test") # Finetune on only positive reviews imdb = imdb.filter(lambda sample: sample["label"] == 1) sentiment_fn = pipeline( "sentiment-analysis", "lvwerra/distilbert-imdb", top_k=2, truncation=True, batch_size=256, device=0 if int(os.environ.get("LOCAL_RANK", 0)) == 0 else -1, ) def metric_fn(samples: List[str], **kwargs) -> Dict[str, List[float]]: sentiments = list(map(get_positive_score, sentiment_fn(samples))) return {"sentiments": sentiments} trainer = trlx.train( samples=imdb["text"], eval_prompts=["I don't know much about Hungarian underground"] * 64, metric_fn=metric_fn, config=config, ) trainer.save_pretrained("reviews-sft") if __name__ == "__main__": hparams = {} if len(sys.argv) == 1 else json.loads(sys.argv[1]) main(hparams)