import argparse import time import numpy as np import torch import torch.nn as nn import quant from gptq import GPTQ from datautils import get_loaders def find_layers(module, layers=[nn.Conv2d, nn.Linear], name=''): if type(module) in layers: return {name: module} res = {} for name1, child in module.named_children(): res.update(find_layers(child, layers=layers, name=name + '.' + name1 if name != '' else name1)) return res def get_llama(model): def skip(*args, **kwargs): pass torch.nn.init.kaiming_uniform_ = skip torch.nn.init.uniform_ = skip torch.nn.init.normal_ = skip from transformers import LlamaForCausalLM model = LlamaForCausalLM.from_pretrained(model, torch_dtype=torch.float16) model.seqlen = 2048 return model @torch.no_grad() def llama_sequential(model, dataloader, dev): print('Starting ...') use_cache = model.config.use_cache model.config.use_cache = False layers = model.model.layers model.model.embed_tokens = model.model.embed_tokens.to(dev) model.model.norm = model.model.norm.to(dev) layers[0] = layers[0].to(dev) dtype = next(iter(model.parameters())).dtype inps = torch.zeros((args.nsamples, model.seqlen, model.config.hidden_size), dtype=dtype, device=dev) cache = {'i': 0, 'attention_mask': None} class Catcher(nn.Module): def __init__(self, module): super().__init__() self.module = module def forward(self, inp, **kwargs): inps[cache['i']] = inp cache['i'] += 1 cache['attention_mask'] = kwargs['attention_mask'] cache['position_ids'] = kwargs['position_ids'] raise ValueError layers[0] = Catcher(layers[0]) for batch in dataloader: try: model(batch[0].to(dev)) except ValueError: pass layers[0] = layers[0].module layers[0] = layers[0].cpu() model.model.embed_tokens = model.model.embed_tokens.cpu() model.model.norm = model.model.norm.cpu() torch.cuda.empty_cache() outs = torch.zeros_like(inps) attention_mask = cache['attention_mask'] position_ids = cache['position_ids'] print('Ready.') quantizers = {} for i in range(len(layers)): print(f'Quantizing layer {i+1}/{len(layers)}..') print('+------------------+--------------+------------+-----------+-------+') print('| name | weight_error | fp_inp_SNR | q_inp_SNR | time |') print('+==================+==============+============+===========+=======+') layer = layers[i].to(dev) full = find_layers(layer) if args.true_sequential: sequential = [['self_attn.k_proj', 'self_attn.v_proj', 'self_attn.q_proj'], ['self_attn.o_proj'], ['mlp.up_proj', 'mlp.gate_proj'], ['mlp.down_proj']] else: sequential = [list(full.keys())] for names in sequential: subset = {n: full[n] for n in names} gptq = {} for name in subset: gptq[name] = GPTQ(subset[name]) gptq[name].quantizer.configure(args.wbits, perchannel=True, mse=False) def add_batch(name): def tmp(_, inp, out): gptq[name].add_batch(inp[0].data, out.data) return tmp handles = [] for name in subset: handles.append(subset[name].register_forward_hook(add_batch(name))) for j in range(args.nsamples): outs[j] = layer(inps[j].unsqueeze(0), attention_mask=attention_mask, position_ids=position_ids)[0] for h in handles: h.remove() for name in subset: scale, zero, g_idx, error = gptq[name].fasterquant(percdamp=args.percdamp, groupsize=args.groupsize, actorder=args.act_order, name=name) quantizers['model.layers.%d.%s' % (i, name)] = (gptq[name].quantizer.cpu(), scale.cpu(), zero.cpu(), g_idx.cpu(), args.wbits, args.groupsize) gptq[name].free() for j in range(args.nsamples): outs[j] = layer(inps[j].unsqueeze(0), attention_mask=attention_mask, position_ids=position_ids)[0] layers[i] = layer.cpu() del layer del gptq torch.cuda.empty_cache() inps, outs = outs, inps print('+------------------+--------------+------------+-----------+-------+') print('\n') model.config.use_cache = use_cache return quantizers @torch.no_grad() def llama_eval(model, testenc, dev): print('Evaluating ...') testenc = testenc.input_ids nsamples = testenc.numel() // model.seqlen use_cache = model.config.use_cache model.config.use_cache = False layers = model.model.layers model.model.embed_tokens = model.model.embed_tokens.to(dev) layers[0] = layers[0].to(dev) dtype = next(iter(model.parameters())).dtype inps = torch.zeros((nsamples, model.seqlen, model.config.hidden_size), dtype=dtype, device=dev) cache = {'i': 0, 'attention_mask': None} class Catcher(nn.Module): def __init__(self, module): super().__init__() self.module = module def forward(self, inp, **kwargs): inps[cache['i']] = inp cache['i'] += 1 cache['attention_mask'] = kwargs['attention_mask'] cache['position_ids'] = kwargs['position_ids'] raise ValueError layers[0] = Catcher(layers[0]) for i in range(nsamples): batch = testenc[:, (i * model.seqlen):((i + 1) * model.seqlen)].to(dev) try: model(batch) except ValueError: pass layers[0] = layers[0].module layers[0] = layers[0].cpu() model.model.embed_tokens = model.model.embed_tokens.cpu() torch.cuda.empty_cache() outs = torch.zeros_like(inps) attention_mask = cache['attention_mask'] position_ids = cache['position_ids'] for i in range(len(layers)): print(i) layer = layers[i].to(dev) if args.nearest: subset = find_layers(layer) for name in subset: quantizer = quant.Quantizer() quantizer.configure(args.wbits, perchannel=True, sym=args.sym, mse=False) W = subset[name].weight.data quantizer.find_params(W, weight=True) subset[name].weight.data = quantizer.quantize(W).to(next(iter(layer.parameters())).dtype) for j in range(nsamples): outs[j] = layer(inps[j].unsqueeze(0), attention_mask=attention_mask, position_ids=position_ids)[0] layers[i] = layer.cpu() del layer torch.cuda.empty_cache() inps, outs = outs, inps if model.model.norm is not None: model.model.norm = model.model.norm.to(dev) model.lm_head = model.lm_head.to(dev) testenc = testenc.to(dev) nlls = [] for i in range(nsamples): hidden_states = inps[i].unsqueeze(0) if model.model.norm is not None: hidden_states = model.model.norm(hidden_states) lm_logits = model.lm_head(hidden_states) shift_logits = lm_logits[:, :-1, :].contiguous() shift_labels = testenc[:, (i * model.seqlen):((i + 1) * model.seqlen)][:, 1:] loss_fct = nn.CrossEntropyLoss() loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) neg_log_likelihood = loss.float() * model.seqlen nlls.append(neg_log_likelihood) ppl = torch.exp(torch.stack(nlls).sum() / (nsamples * model.seqlen)) print(ppl.item()) model.config.use_cache = use_cache # TODO: perform packing on GPU def llama_pack(model, quantizers, wbits, groupsize): layers = find_layers(model) layers = {n: layers[n] for n in quantizers} quant.make_quant_linear(model, quantizers, wbits, groupsize) qlayers = find_layers(model, [quant.QuantLinear]) print('Packing ...') for name in qlayers: print(name) quantizers[name], scale, zero, g_idx, _, _ = quantizers[name] qlayers[name].pack(layers[name], scale, zero, g_idx) print('Done.') return model def load_quant(model, checkpoint, wbits, groupsize=-1, fused_mlp=True, eval=True, warmup_autotune=True): from transformers import LlamaConfig, LlamaForCausalLM, modeling_utils config = LlamaConfig.from_pretrained(model) def noop(*args, **kwargs): pass torch.nn.init.kaiming_uniform_ = noop torch.nn.init.uniform_ = noop torch.nn.init.normal_ = noop torch.set_default_dtype(torch.half) modeling_utils._init_weights = False torch.set_default_dtype(torch.half) model = LlamaForCausalLM(config) torch.set_default_dtype(torch.float) if eval: model = model.eval() layers = find_layers(model) for name in ['lm_head']: if name in layers: del layers[name] quant.make_quant_linear(model, layers, wbits, groupsize) del layers print('Loading model ...') if checkpoint.endswith('.safetensors'): from safetensors.torch import load_file as safe_load model.load_state_dict(safe_load(checkpoint)) else: model.load_state_dict(torch.load(checkpoint)) quant.make_quant_attn(model) if eval and fused_mlp: quant.make_fused_mlp(model) if warmup_autotune: quant.autotune_warmup_linear(model, transpose=not (eval)) if eval and fused_mlp: quant.autotune_warmup_fused(model) model.seqlen = 2048 print('Done.') return model if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('model', type=str, help='llama model to load') parser.add_argument('dataset', type=str, choices=['wikitext2', 'ptb', 'c4'], help='Where to extract calibration data from.') parser.add_argument('--seed', type=int, default=0, help='Seed for sampling the calibration data.') parser.add_argument('--nsamples', type=int, default=128, help='Number of calibration data samples.') parser.add_argument('--percdamp', type=float, default=.01, help='Percent of the average Hessian diagonal to use for dampening.') parser.add_argument('--wbits', type=int, default=16, choices=[2, 3, 4, 8, 16], help='#bits to use for quantization; use 16 for evaluating base model.') parser.add_argument('--groupsize', type=int, default=-1, help='Groupsize to use for quantization; default uses full row.') parser.add_argument('--eval', action='store_true', help='evaluate quantized model.') parser.add_argument('--save', type=str, default='', help='Save quantized checkpoint under this name.') parser.add_argument('--save_safetensors', type=str, default='', help='Save quantized `.safetensors` checkpoint under this name.') parser.add_argument('--quant-directory', type=str, default=None, help='Specify the directory for export quantization parameters to toml format. `None` means no export by default.') parser.add_argument('--act-order', action='store_true', help='Whether to apply the activation order GPTQ heuristic') parser.add_argument('--true-sequential', action='store_true', help='Whether to run in true sequential model.') args = parser.parse_args() DEV = torch.device('cuda:0') gpu_dist = [] model = get_llama(args.model) model.eval() dataloader, testloader = get_loaders(args.dataset, nsamples=args.nsamples, seed=args.seed, model=args.model, seqlen=model.seqlen) if args.wbits < 16: tick = time.time() quantizers = llama_sequential(model, dataloader, DEV) print(time.time() - tick) if args.eval: datasets = ['wikitext2', 'ptb', 'c4'] if args.new_eval: datasets = ['wikitext2', 'ptb-new', 'c4-new'] for dataset in datasets: dataloader, testloader = get_loaders(dataset, seed=args.seed, model=args.model, seqlen=model.seqlen) print(dataset) llama_eval(model, testloader, DEV) llama_pack(model, quantizers, args.wbits, args.groupsize) torch.save(model.state_dict(), args.save) # bash : CUDA_VISIBLE_DEVICES=0 proxychains python quant_llama.py ../model/llama7b_hf wikitext2 --wbits 4 --groupsize 128 --save llama7b-4bit-128g.pt