|
import logging |
|
import os |
|
import re |
|
import time |
|
import traceback |
|
|
|
import openai |
|
import pandas as pd |
|
import requests |
|
import tweepy |
|
from huggingface_hub import upload_file |
|
|
|
logger = logging.getLogger() |
|
logging.basicConfig(level=logging.INFO) |
|
logger.setLevel(logging.INFO) |
|
|
|
bot_user_id = 1612106815096999936 |
|
bot_user_name = "RoastOrToastGPT" |
|
|
|
persistent_storage_repo_id = "team6/roast-history" |
|
persistent_storage_file_name = "history.csv" |
|
persistent_storage_file_url = ( |
|
f"https://huggingface.co/datasets/{persistent_storage_repo_id}/resolve/main/{persistent_storage_file_name}" |
|
) |
|
|
|
|
|
pattern_at_mention = re.compile(re.escape("@roastortoastgpt"), re.IGNORECASE) |
|
|
|
print(persistent_storage_file_url) |
|
|
|
openai_key = os.environ.get("openai_api_key") |
|
consumer_key = os.environ.get("consumer_key") |
|
consumer_secret_key = os.environ.get("consumer_secret_key") |
|
access_token = os.environ.get("access_token") |
|
access_token_secret = os.environ.get("access_token_secret") |
|
bearer_token = os.environ.get("bearer_token") |
|
hf_token = os.environ.get("hf_token") |
|
|
|
client = tweepy.Client( |
|
bearer_token=bearer_token, |
|
consumer_key=consumer_key, |
|
consumer_secret=consumer_secret_key, |
|
access_token=access_token, |
|
access_token_secret=access_token_secret, |
|
wait_on_rate_limit=True, |
|
) |
|
|
|
|
|
def response(text): |
|
openai.api_key = openai_key |
|
response = openai.Completion.create( |
|
engine="text-davinci-002", |
|
prompt=text, |
|
temperature=0.9, |
|
max_tokens=60, |
|
top_p=1, |
|
frequency_penalty=0, |
|
presence_penalty=1.0, |
|
) |
|
|
|
return response.choices[0].text.strip() |
|
|
|
|
|
def roast(text): |
|
return response( |
|
f"Humorously mock, humiliate and hurt the user's feelings with a well-timed joke, diss or comeback based on the info.\n\nInfo: {text}\n\nResponse:" |
|
) |
|
|
|
|
|
def toast(text): |
|
return response( |
|
f"Give the user a genuine and unique compliment to make them feel good about themselves based on the info in a hood style manner.\n\nInfo: {text}\n\nResponse:" |
|
) |
|
|
|
|
|
def reply_to_mentions(): |
|
df = pd.read_csv(persistent_storage_file_url) |
|
last_tweet_id = df.iloc[-1]["id"] |
|
|
|
|
|
|
|
all_convo_ids = df["conversation_id"].unique().tolist() |
|
|
|
|
|
mentions = client.get_users_mentions( |
|
id=bot_user_id, |
|
expansions=["author_id", "in_reply_to_user_id", "referenced_tweets.id"], |
|
tweet_fields=["conversation_id"], |
|
since_id=last_tweet_id, |
|
) |
|
|
|
|
|
if mentions.data is None: |
|
|
|
logger.info("No new mentions found") |
|
return |
|
|
|
data_to_add = {"id": [], "conversation_id": []} |
|
|
|
|
|
for mention in reversed(mentions.data): |
|
|
|
if mention.author_id == bot_user_id: |
|
|
|
logger.info(f"Skipping {mention.id} as it is from the bot") |
|
continue |
|
|
|
if mention.in_reply_to_user_id == bot_user_id: |
|
|
|
logger.info(f"Skipping {mention.id} as the tweet to roast is from the bot") |
|
continue |
|
|
|
if not mention.referenced_tweets: |
|
logger.info(f"Skipping {mention.id} as it is not a reply") |
|
continue |
|
|
|
|
|
|
|
if mention.conversation_id in all_convo_ids: |
|
logger.info(f"Skipping {mention.id} as we've already responded to this conversation") |
|
continue |
|
|
|
logger.info(f"Responding to {mention.id}, which said {mention.text}") |
|
|
|
tweet_to_roast_id = mention.referenced_tweets[0].id |
|
tweet_to_roast = client.get_tweet(tweet_to_roast_id) |
|
text_to_roast = tweet_to_roast.data.text |
|
|
|
mention_text = mention.text |
|
mention_text = pattern_at_mention.sub("", mention_text) |
|
logger.info(f"Mention Text: {mention_text}") |
|
|
|
if "roast" in mention_text.lower(): |
|
logger.info(f"Roasting {mention.id}") |
|
text_out = roast(text_to_roast) |
|
elif "toast" in mention_text.lower(): |
|
logger.info(f"Toasting {mention.id}") |
|
text_out = toast(text_to_roast) |
|
else: |
|
logger.info(f"Skipping {mention.id} as it is not a roast or toast") |
|
continue |
|
|
|
|
|
logger.info(f"Quote tweeting {tweet_to_roast_id} with response: {text_out}") |
|
quote_tweet_response = client.create_tweet( |
|
text=text_out, |
|
quote_tweet_id=tweet_to_roast_id, |
|
) |
|
print("QUOTE TWEET RESPONSE", quote_tweet_response.data) |
|
response_quote_tweet_id = quote_tweet_response.data.get("id") |
|
logger.info(f"Response Quote Tweet ID: {response_quote_tweet_id}") |
|
response_quote_tweet_url = f"https://twitter.com/{bot_user_name}/status/{response_quote_tweet_id}" |
|
logger.info(f"Response Quote Tweet URL: {response_quote_tweet_url}") |
|
|
|
|
|
logger.info(f"Responding to: {mention.id}") |
|
response_reply = client.create_tweet( |
|
text=f"Here's my response: {response_quote_tweet_url}", |
|
in_reply_to_tweet_id=mention.id, |
|
) |
|
response_reply_id = response_reply.data.get("id") |
|
logger.info(f"Response Reply ID: {response_reply_id}") |
|
|
|
|
|
data_to_add["id"].append(mention.id) |
|
data_to_add["conversation_id"].append(mention.conversation_id) |
|
|
|
|
|
logger.info("-" * 100) |
|
|
|
|
|
if len(data_to_add["id"]) == 0: |
|
logger.info("No new mentions to add to the history") |
|
return |
|
|
|
logger.info(f"Adding {len(data_to_add['id'])} new mentions to the history") |
|
|
|
df_to_add = pd.DataFrame(data_to_add) |
|
df = pd.concat([df, df_to_add], ignore_index=True) |
|
df.to_csv(persistent_storage_file_name, index=False) |
|
upload_file( |
|
repo_id=persistent_storage_repo_id, |
|
path_or_fileobj=persistent_storage_file_name, |
|
path_in_repo=persistent_storage_file_name, |
|
repo_type="dataset", |
|
token=hf_token, |
|
) |
|
|
|
|
|
def main(): |
|
logger.info("Starting up...") |
|
|
|
while True: |
|
try: |
|
|
|
requests.get("https://team6-roast.hf.space/") |
|
reply_to_mentions() |
|
except Exception as e: |
|
logger.error(e) |
|
traceback.print_exc() |
|
|
|
logger.info("Sleeping for 30 seconds...") |
|
time.sleep(30) |
|
|
|
|
|
|
|
|
|
|