roast / main.py
nateraw's picture
Synced repo using 'sync_with_huggingface' Github Action
07a062d
raw
history blame
7.22 kB
import logging
import os
import re
import time
import traceback
import openai
import pandas as pd
import requests
import tweepy
from huggingface_hub import upload_file
logger = logging.getLogger()
logging.basicConfig(level=logging.INFO)
logger.setLevel(logging.INFO)
bot_user_id = 1612106815096999936
bot_user_name = "RoastOrToastGPT"
persistent_storage_repo_id = "team6/roast-history"
persistent_storage_file_name = "history.csv"
persistent_storage_file_url = (
f"https://huggingface.co/datasets/{persistent_storage_repo_id}/resolve/main/{persistent_storage_file_name}"
)
# will be used to remove the @roastortoastgpt from the tweet text (case insensitive)
pattern_at_mention = re.compile(re.escape("@roastortoastgpt"), re.IGNORECASE)
print(persistent_storage_file_url)
openai_key = os.environ.get("openai_api_key")
consumer_key = os.environ.get("consumer_key")
consumer_secret_key = os.environ.get("consumer_secret_key")
access_token = os.environ.get("access_token")
access_token_secret = os.environ.get("access_token_secret")
bearer_token = os.environ.get("bearer_token")
hf_token = os.environ.get("hf_token")
client = tweepy.Client(
bearer_token=bearer_token,
consumer_key=consumer_key,
consumer_secret=consumer_secret_key,
access_token=access_token,
access_token_secret=access_token_secret,
wait_on_rate_limit=True,
)
def response(text):
openai.api_key = openai_key
response = openai.Completion.create(
engine="text-davinci-002",
prompt=text,
temperature=0.9,
max_tokens=60,
top_p=1,
frequency_penalty=0,
presence_penalty=1.0,
)
return response.choices[0].text.strip()
def roast(text):
return response(
f"Humorously mock, humiliate and hurt the user's feelings with a well-timed joke, diss or comeback based on the info.\n\nInfo: {text}\n\nResponse:"
)
def toast(text):
return response(
f"Give the user a genuine and unique compliment to make them feel good about themselves based on the info in a hood style manner.\n\nInfo: {text}\n\nResponse:"
)
def reply_to_mentions():
df = pd.read_csv(persistent_storage_file_url)
last_tweet_id = df.iloc[-1]["id"]
# List of unique conversation ids that we've already responded to.
# This is to prevent us from responding to the same conversation twice.
all_convo_ids = df["conversation_id"].unique().tolist()
# get the mentions. These are both direct mentions and replies to our tweets
mentions = client.get_users_mentions(
id=bot_user_id,
expansions=["author_id", "in_reply_to_user_id", "referenced_tweets.id"],
tweet_fields=["conversation_id"],
since_id=last_tweet_id,
)
# if there are no new mentions, return
if mentions.data is None:
# log it
logger.info("No new mentions found")
return
data_to_add = {"id": [], "conversation_id": []}
# otherwise, iterate through the mentions and respond to them
# we iterate through the mentions in reverse order so that we respond to the oldest mentions first
for mention in reversed(mentions.data):
if mention.author_id == bot_user_id:
# don't respond to our own tweets
logger.info(f"Skipping {mention.id} as it is from the bot")
continue
if mention.in_reply_to_user_id == bot_user_id:
# don't respond to our own tweets
logger.info(f"Skipping {mention.id} as the tweet to roast is from the bot")
continue
if not mention.referenced_tweets:
logger.info(f"Skipping {mention.id} as it is not a reply")
continue
# if we've already responded to this conversation, skip it
# also should catch the case where we've already responded to this tweet (though that shouldn't happen)
if mention.conversation_id in all_convo_ids:
logger.info(f"Skipping {mention.id} as we've already responded to this conversation")
continue
logger.info(f"Responding to {mention.id}, which said {mention.text}")
tweet_to_roast_id = mention.referenced_tweets[0].id
tweet_to_roast = client.get_tweet(tweet_to_roast_id)
text_to_roast = tweet_to_roast.data.text
mention_text = mention.text
mention_text = pattern_at_mention.sub("", mention_text)
logger.info(f"Mention Text: {mention_text}")
if "roast" in mention_text.lower():
logger.info(f"Roasting {mention.id}")
text_out = roast(text_to_roast)
elif "toast" in mention_text.lower():
logger.info(f"Toasting {mention.id}")
text_out = toast(text_to_roast)
else:
logger.info(f"Skipping {mention.id} as it is not a roast or toast")
continue
# Quote tweet the tweet to roast
logger.info(f"Quote tweeting {tweet_to_roast_id} with response: {text_out}")
quote_tweet_response = client.create_tweet(
text=text_out,
quote_tweet_id=tweet_to_roast_id,
)
print("QUOTE TWEET RESPONSE", quote_tweet_response.data)
response_quote_tweet_id = quote_tweet_response.data.get("id")
logger.info(f"Response Quote Tweet ID: {response_quote_tweet_id}")
response_quote_tweet_url = f"https://twitter.com/{bot_user_name}/status/{response_quote_tweet_id}"
logger.info(f"Response Quote Tweet URL: {response_quote_tweet_url}")
# reply to the mention with the link to the response tweet
logger.info(f"Responding to: {mention.id}")
response_reply = client.create_tweet(
text=f"Here's my response: {response_quote_tweet_url}",
in_reply_to_tweet_id=mention.id,
)
response_reply_id = response_reply.data.get("id")
logger.info(f"Response Reply ID: {response_reply_id}")
# add the mention to the history
data_to_add["id"].append(mention.id)
data_to_add["conversation_id"].append(mention.conversation_id)
# add a line break to the log
logger.info("-" * 100)
# update the history df and upload it to the persistent storage repo
if len(data_to_add["id"]) == 0:
logger.info("No new mentions to add to the history")
return
logger.info(f"Adding {len(data_to_add['id'])} new mentions to the history")
df_to_add = pd.DataFrame(data_to_add)
df = pd.concat([df, df_to_add], ignore_index=True)
df.to_csv(persistent_storage_file_name, index=False)
upload_file(
repo_id=persistent_storage_repo_id,
path_or_fileobj=persistent_storage_file_name,
path_in_repo=persistent_storage_file_name,
repo_type="dataset",
token=hf_token,
)
def main():
logger.info("Starting up...")
while True:
try:
# Dummy request to keep the Hugging Face Space awake
requests.get("https://team6-roast.hf.space/")
reply_to_mentions()
except Exception as e:
logger.error(e)
traceback.print_exc()
logger.info("Sleeping for 30 seconds...")
time.sleep(30)
# if __name__ == "__main__":
# main()