from tensorflow.keras.models import Sequential from tensorflow.keras.layers import GRU, LSTM, Dense, Dropout from warnings import filterwarnings filterwarnings('ignore') """ GRU (Gated Recurrent Units) Model """ async def gru_model(input_shape): cdef object model = Sequential([ GRU(50, return_sequences = True, input_shape = input_shape), Dropout(0.2), GRU(50, return_sequences = True), Dropout(0.2), GRU(50, return_sequences = True), Dropout(0.2), GRU(50, return_sequences = False), Dropout(0.2), Dense(units = 1) ]) model.compile(optimizer = 'nadam', loss = 'mean_squared_error') return model """ LSTM (Long Short-Term Memory) Model """ async def lstm_model(input_shape): cdef object model = Sequential([ LSTM(50, return_sequences = True, input_shape = input_shape), Dropout(0.2), LSTM(50, return_sequences = True), Dropout(0.2), LSTM(50, return_sequences = True), Dropout(0.2), LSTM(50, return_sequences = False), Dropout(0.2), Dense(units = 1) ]) model.compile(optimizer = 'nadam', loss = 'mean_squared_error') return model """ LSTM (Long Short-Term Memory) and GRU (Gated Recurrent Units) Model """ async def lstm_gru_model(input_shape): cdef object model = Sequential([ LSTM(50, return_sequences = True, input_shape = input_shape), Dropout(0.2), GRU(50, return_sequences = True), Dropout(0.2), LSTM(50, return_sequences = True), Dropout(0.2), GRU(50, return_sequences = False), Dropout(0.2), Dense(units = 1) ]) model.compile(optimizer = 'nadam', loss = 'mean_squared_error') return model