Spaces:
Sleeping
Sleeping
File size: 27,621 Bytes
0dda2a1 74620ef 2a77d6d 29dd018 6a1e988 a8a5b30 4275b3b 29dd018 c1fb41b 0dda2a1 6c7d766 2a77d6d 7d859ca 0dda2a1 b368e21 ba4a6fd 17050fe eff6080 b160d2c eff6080 0dda2a1 b368e21 0dda2a1 76b93b0 b368e21 0dda2a1 8c0f543 ecf3a0b ba4a6fd 074d6fc ecf3a0b ba4a6fd 4275b3b ba4a6fd 4275b3b ba4a6fd 0dda2a1 4275b3b c1fb41b 0dda2a1 ba4a6fd 8c0f543 ba4a6fd 8c0f543 ba4a6fd ad139ee 92983fc 8c0f543 ba4a6fd 8c0f543 dcc2094 8c0f543 ba4a6fd 8c0f543 92983fc 8c0f543 ba4a6fd 92983fc 8c0f543 ba4a6fd 8c0f543 ba4a6fd 8c0f543 ba4a6fd ecf3a0b 29dd018 c1fb41b 29dd018 c5522cd 074d6fc c5522cd af3f1e4 ba4a6fd 29dd018 c5522cd ba4a6fd 29dd018 ba4a6fd 29dd018 8c0f543 29dd018 2e0e1b9 074d6fc 29dd018 ba4a6fd ecf3a0b ba4a6fd 29dd018 ba4a6fd 29dd018 ba4a6fd 8c0f543 ba4a6fd 8c0f543 ba4a6fd 4275b3b 6a2c2bb ba4a6fd 0dda2a1 011040f b368e21 ad139ee b368e21 6febb6b 6187b6c ad139ee 8c0f543 b368e21 0dda2a1 d3176f4 8821135 a8a5b30 8821135 cfd2b5e 1945ea8 4c37639 1945ea8 a8a5b30 6747b31 a8a5b30 2a77d6d a8a5b30 2a77d6d a8a5b30 d3176f4 a8a5b30 d3176f4 6c7d766 d3176f4 8821135 ad139ee 88d2fdc b368e21 8821135 6747b31 8821135 2a77d6d 8821135 2a77d6d 8821135 f04fc73 8821135 f04fc73 88d2fdc 8f4f425 6a1e988 8821135 6747b31 8821135 2a77d6d 8821135 2a77d6d 8821135 6a1e988 7d859ca bb20c13 718d910 ad139ee 3fa5f95 7d859ca ad139ee b368e21 6187b6c ad139ee b368e21 e25acc0 7d859ca 6747b31 d3176f4 6747b31 2a77d6d 6747b31 2a77d6d 6747b31 2a77d6d 6747b31 d3176f4 6747b31 d3176f4 0dda2a1 b368e21 011040f 2a77d6d ad139ee 2a77d6d ad139ee 4275b3b 2a77d6d ad139ee cfd2b5e 40d15f0 011040f 4237136 ad139ee 4237136 40d15f0 b368e21 011040f 60ccf10 5ebc71d b368e21 6c7d766 5ebc71d 6c7d766 d3176f4 b368e21 6c7d766 718d910 ad139ee 6c7d766 3fa5f95 b368e21 ac9adab 8821135 9f24b08 8821135 d3176f4 ba4a6fd 2a77d6d 8821135 2a77d6d 8821135 937bcc4 d9c4277 53872bd b368e21 53872bd b368e21 53872bd 073e47f 53872bd 937bcc4 53872bd e25acc0 ebe1426 4275b3b 8821135 9f24b08 2a77d6d 9f24b08 4237136 e5394ac 9f24b08 e5394ac 9f24b08 2a77d6d e5394ac 9f24b08 2a77d6d 9f24b08 2a77d6d 9f24b08 2a77d6d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 |
import io
import tempfile
from ipaddress import ip_address
from typing import Optional
import jwt
import base64
import json
from click import option
from jwt import ExpiredSignatureError, InvalidTokenError
from starlette import status
from functions import *
import pandas as pd
from fastapi import FastAPI, File, UploadFile, HTTPException, Request, Query
from pydantic import BaseModel
from fastapi.middleware.cors import CORSMiddleware
from src.api.speech_api import speech_translator_router
from functions import client as supabase
from urllib.parse import urlparse
import nltk
from collections import Counter, defaultdict
from datetime import datetime, timedelta
from dateutil.parser import isoparse
nltk.download('punkt_tab')
app = FastAPI(title="ConversAI", root_path="/api/v1")
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
app.include_router(speech_translator_router, prefix="/speech")
@app.post("/signup")
async def sign_up(email, username, password):
res, _ = supabase.auth.sign_up(
{"email": email, "password": password, "role": "user"}
)
user_id = res[1].id
r_ = createUser(user_id=user_id, username=username, email=email)
if r_.get('code') == 409:
return r_
elif r_.get('code') == 200:
response = {
"status": "success",
"code": 200,
"message": "Please check you email address for email verification",
}
else:
response = {
"status": "failed",
"code": 400,
"message": "Failed to sign up please try again later",
}
return response
@app.post("/session-check")
async def check_session(user_id: str):
res = supabase.auth.get_session()
if res == None:
try:
supabase.table("Stores").delete().eq(
"StoreID", user_id
).execute()
resp = supabase.auth.sign_out()
response = {"message": "success", "code": 200, "Session": res}
return response
except Exception as e:
raise HTTPException(status_code=400, detail=str(e))
return res
@app.post("/get-user")
async def get_user(access_token):
res = supabase.auth.get_user(jwt=access_token)
return res
@app.post("/referesh-token")
async def refresh_token(refresh_token):
res = supabase.auth.refresh_token(refresh_token)
return res
@app.post("/login")
async def sign_in(email, password):
try:
res = supabase.auth.sign_in_with_password(
{"email": email, "password": password}
)
user_id = res.user.id
access_token = res.session.access_token
refresh_token = res.session.refresh_token
store_session_check = supabase.table("Stores").select("*").filter("StoreID", "eq", user_id).execute()
store_id = None
if store_session_check and store_session_check.data:
store_id = store_session_check.data[0].get("StoreID")
userData = supabase.table("ConversAI_UserInfo").select("*").filter("user_id", "eq", user_id).execute().data
username = userData[0]["username"]
if not store_id:
response = (
supabase.table("Stores").insert(
{
"AccessToken": access_token,
"StoreID": user_id,
"RefreshToken": refresh_token,
"email": email
}
).execute()
)
message = {
"message": "Success",
"code": status.HTTP_200_OK,
"username": username,
"user_id": user_id,
"access_token": access_token,
"refresh_token": refresh_token,
}
return message
elif store_id == user_id:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail="You are already signed in. Please sign out first to sign in again."
)
else:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail="Failed to sign in. Please check your credentials."
)
except HTTPException as http_exc:
raise http_exc
except Exception as e:
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=f"An unexpected error occurred during sign-in: {str(e)}"
)
@app.post("/login_with_token")
async def login_with_token(access_token: str, refresh_token: str):
try:
decoded_token = jwt.decode(access_token, options={"verify_signature": False})
user_id_oauth = decoded_token.get("sub")
try:
user_id = supabase.table("ConversAI_UserInfo").select("*").filter("user_id", "eq", user_id_oauth).execute()
user_id = supabase.table("ConversAI_UserInfo").select("*").filter("email", "eq", user_id_oauth).execute()
user_name = user_id.data[0]["username"]
except:
user_name = ''
json = {
"code": status.HTTP_200_OK,
"user_id": decoded_token.get("sub"),
"email": decoded_token.get("email"),
"access_token": access_token,
"refresh_token": refresh_token,
"issued_at": decoded_token.get("iat"),
"expires_at": decoded_token.get("exp"),
"username": user_name
}
return json
except (ExpiredSignatureError, InvalidTokenError) as e:
raise HTTPException(status_code=status.HTTP_401_UNAUTHORIZED, detail=str(e))
@app.post("/user_name")
async def user_name_(username: str, user_id: str, email: str):
r_ = createUser(user_id=user_id, username=username, email=email)
return r_
@app.post("/set-session-data")
async def set_session_data(access_token, refresh_token, user_id):
res = supabase.auth.set_session(access_token, refresh_token)
store_session_check = supabase.table("Stores").select("*").filter("StoreID", "eq", user_id).execute()
store_id = None
if store_session_check and store_session_check.data:
store_id = store_session_check.data[0].get("StoreID")
if not store_id:
response = (
supabase.table("Stores").insert(
{
"AccessToken": access_token,
"StoreID": user_id,
"RefreshToken": refresh_token,
}
).execute()
)
res = {
"message": "success",
"code": 200,
"session_data": res,
}
return res
@app.post("/logout")
async def sign_out(user_id):
try:
supabase.table("Stores").delete().eq(
"StoreID", user_id
).execute()
res = supabase.auth.sign_out()
response = {"message": "success"}
return response
except Exception as e:
raise HTTPException(status_code=400, detail=str(e))
@app.post("/oauth")
async def oauth():
res = supabase.auth.sign_in_with_oauth(
{"provider": "google", "options": {"redirect_to": "https://convers-ai-lac.vercel.app/home"}})
return res
@app.post("/newChatbot")
async def newChatbot(chatbotName: str, username: str):
currentBotCount = len(listTables(username=username)["output"])
limit = supabase.table("ConversAI_UserConfig").select("chatbotLimit").eq("user_id", username).execute().data[0][
"chatbotLimit"]
if currentBotCount >= int(limit):
return {
"output": "CHATBOT LIMIT EXCEEDED"
}
supabase.table("ConversAI_ChatbotInfo").insert({"user_id": username, "chatbotname": chatbotName}).execute()
chatbotName = f"convai${username}${chatbotName}"
return createTable(tablename=chatbotName)
@app.post("/loadPDF")
async def loadPDF(vectorstore: str, pdf: UploadFile = File(...)):
username, chatbotName = vectorstore.split("$")[1], vectorstore.split("$")[2]
source = pdf.filename
pdf = await pdf.read()
with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as temp_file:
temp_file.write(pdf)
temp_file_path = temp_file.name
text = extractTextFromPdf(temp_file_path)
os.remove(temp_file_path)
dct = {
"output": text,
"source": source
}
dct = json.dumps(dct, indent=1).encode("utf-8")
fileName = createDataSourceName(sourceName=source)
response = supabase.storage.from_("ConversAI").upload(file=dct, path=f"{fileName}_data.json")
response = (
supabase.table("ConversAI_ChatbotDataSources")
.insert({"username": username,
"chatbotName": chatbotName,
"dataSourceName": fileName,
"sourceEndpoint": "/loadPDF",
"sourceContentURL": os.path.join(os.environ["SUPABASE_PUBLIC_BASE_URL"], f"{fileName}_data.json")})
.execute()
)
return {
"output": "SUCCESS"
}
@app.post("/loadImagePDF")
async def loadImagePDF(vectorstore: str, pdf: UploadFile = File(...)):
username, chatbotName = vectorstore.split("$")[1], vectorstore.split("$")[2]
source = pdf.filename
pdf = await pdf.read()
text = getTextFromImagePDF(pdfBytes=pdf)
dct = {
"output": text,
"source": source
}
dct = json.dumps(dct, indent=1).encode("utf-8")
fileName = createDataSourceName(sourceName=source)
response = supabase.storage.from_("ConversAI").upload(file=dct, path=f"{fileName}_data.json")
response = (
supabase.table("ConversAI_ChatbotDataSources")
.insert({"username": username,
"chatbotName": chatbotName,
"dataSourceName": fileName,
"sourceEndpoint": "/loadImagePDF",
"sourceContentURL": os.path.join(os.environ["SUPABASE_PUBLIC_BASE_URL"], f"{fileName}_data.json")})
.execute()
)
return {
"output": "SUCCESS"
}
class AddText(BaseModel):
vectorstore: str
text: str
@app.post("/loadText")
async def loadText(addTextConfig: AddText):
vectorstore, text = addTextConfig.vectorstore, addTextConfig.text
username, chatbotName = vectorstore.split("$")[1], vectorstore.split("$")[2]
dct = {
"output": text,
"source": "Text"
}
dct = json.dumps(dct, indent=1).encode("utf-8")
fileName = createDataSourceName(sourceName="Text")
response = supabase.storage.from_("ConversAI").upload(file=dct, path=f"{fileName}_data.json")
response = (
supabase.table("ConversAI_ChatbotDataSources")
.insert({"username": username,
"chatbotName": chatbotName,
"dataSourceName": fileName,
"sourceEndpoint": "/loadText",
"sourceContentURL": os.path.join(os.environ["SUPABASE_PUBLIC_BASE_URL"], f"{fileName}_data.json")})
.execute()
)
return {
"output": "SUCCESS"
}
class AddQAPair(BaseModel):
vectorstore: str
question: str
answer: str
@app.post("/addQAPair")
async def addQAPairData(addQaPair: AddQAPair):
username, chatbotname = addQaPair.vectorstore.split("$")[1], addQaPair.vectorstore.split("$")[2]
df = pd.DataFrame(supabase.table("ConversAI_ChatbotInfo").select("*").execute().data)
currentCount = df[(df["user_id"] == username) & (df["chatbotname"] == chatbotname)]["charactercount"].iloc[0]
qa = f"QUESTION: {addQaPair.question}\tANSWER: {addQaPair.answer}"
newCount = currentCount + len(qa)
limit = supabase.table("ConversAI_UserConfig").select("tokenLimit").eq("user_id", username).execute().data[0][
"tokenLimit"]
if newCount < int(limit):
supabase.table("ConversAI_ChatbotInfo").update({"charactercount": str(newCount)}).eq("user_id", username).eq(
"chatbotname", chatbotname).execute()
return addDocuments(text=qa, source="Q&A Pairs", vectorstore=addQaPair.vectorstore)
else:
return {
"output": "WEBSITE EXCEEDING LIMITS, PLEASE TRY WITH A SMALLER DOCUMENT."
}
class LoadWebsite(BaseModel):
vectorstore: str
urls: list[str]
source: str
@app.post("/loadWebURLs")
async def loadWebURLs(loadWebsite: LoadWebsite):
vectorstore, urls, source = loadWebsite.vectorstore, loadWebsite.urls, loadWebsite.source
username, chatbotName = vectorstore.split("$")[1], vectorstore.split("$")[2]
text = extractTextFromUrlList(urls=urls)
dct = {
"output": text,
"source": source
}
dct = json.dumps(dct, indent=1).encode("utf-8")
fileName = createDataSourceName(sourceName=source)
response = supabase.storage.from_("ConversAI").upload(file=dct, path=f"{fileName}_data.json")
response = (
supabase.table("ConversAI_ChatbotDataSources")
.insert({"username": username,
"chatbotName": chatbotName,
"dataSourceName": fileName,
"sourceEndpoint": "/loadWebURLs",
"sourceContentURL": os.path.join(os.environ["SUPABASE_PUBLIC_BASE_URL"], f"{fileName}_data.json")})
.execute()
)
return {
"output": "SUCCESS"
}
@app.post("/answerQuery")
async def answerQuestion(request: Request, query: str, vectorstore: str, llmModel: str = "llama3-70b-8192"):
username, chatbotName = vectorstore.split("$")[1], vectorstore.split("$")[2]
output = answerQuery(query=query, vectorstore=vectorstore, llmModel=llmModel)
ip_address = request.client.host
response_token_count = len(output["output"])
city = get_ip_info(ip_address)
response = (
supabase.table("ConversAI_ChatHistory")
.insert({"username": username, "chatbotName": chatbotName, "llmModel": llmModel, "question": query,
"response": output["output"], "IpAddress": ip_address, "ResponseTokenCount": response_token_count,
"vectorstore": vectorstore, "City": city})
.execute()
)
return output
@app.post("/deleteChatbot")
async def deleteChatbot(vectorstore: str):
username, chatbotName = vectorstore.split("$")[1], vectorstore.split("$")[2]
supabase.table('ConversAI_ChatbotInfo').delete().eq('user_id', username).eq('chatbotname', chatbotName).execute()
return deleteTable(tableName=vectorstore)
@app.post("/listChatbots")
async def listChatbots(username: str):
return listTables(username=username)
@app.post("/getLinks")
async def crawlUrl(baseUrl: str):
return {
"urls": getLinks(url=baseUrl, timeout=30),
"source": urlparse(baseUrl).netloc
}
@app.post("/getCurrentCount")
async def getCount(vectorstore: str):
username, chatbotName = vectorstore.split("$")[1], vectorstore.split("$")[2]
df = pd.DataFrame(supabase.table("ConversAI_ChatbotInfo").select("*").execute().data)
return {
"currentCount": df[(df['user_id'] == username) & (df['chatbotname'] == chatbotName)]['charactercount'].iloc[0]
}
class YtTranscript(BaseModel):
vectorstore: str
urls: list[str]
@app.post("/loadYoutubeTranscript")
async def loadYoutubeTranscript(ytTranscript: YtTranscript):
vectorstore, urls = ytTranscript.vectorstore, ytTranscript.urls
username, chatbotName = vectorstore.split("$")[1], vectorstore.split("$")[2]
text = getTranscript(urls=urls)
dct = {
"output": text,
"source": "www.youtube.com"
}
dct = json.dumps(dct, indent=1).encode("utf-8")
fileName = createDataSourceName(sourceName="youtube")
response = supabase.storage.from_("ConversAI").upload(file=dct, path=f"{fileName}_data.json")
response = (
supabase.table("ConversAI_ChatbotDataSources")
.insert({"username": username,
"chatbotName": chatbotName,
"dataSourceName": fileName,
"sourceEndpoint": "/getYoutubeTranscript",
"sourceContentURL": os.path.join(os.environ["SUPABASE_PUBLIC_BASE_URL"], f"{fileName}_data.json")})
.execute()
)
return {
"output": "SUCCESS"
}
@app.post("/analyzeData")
async def analyzeAndAnswer(query: str, file: UploadFile = File(...)):
extension = file.filename.split(".")[-1]
try:
if extension in ["xls", "xlsx", "xlsm", "xlsb"]:
df = pd.read_excel(io.BytesIO(await file.read()))
response = analyzeData(query=query, dataframe=df)
elif extension == "csv":
df = pd.read_csv(io.BytesIO(await file.read()))
response = analyzeData(query=query, dataframe=df)
else:
response = "INVALID FILE TYPE"
return {
"output": response
}
except:
return {
"output": "UNABLE TO ANSWER QUERY"
}
@app.post("/getChatHistory")
async def chatHistory(vectorstore: str):
username, chatbotName = vectorstore.split("$")[1], vectorstore.split("$")[2]
response = supabase.table("ConversAI_ChatHistory").select("timestamp", "question", "response").eq("username",
username).eq(
"chatbotName", chatbotName).execute().data
return response
@app.post("/listChatbotSources")
async def listChatbotSources(vectorstore: str):
username, chatbotName = vectorstore.split("$")[1], vectorstore.split("$")[2]
result = supabase.table("ConversAI_ChatbotDataSources").select("*").eq("username", username).eq("chatbotName",
chatbotName).execute().data
return result
@app.post("/deleteChatbotSource")
async def deleteChatbotSource(dataSourceName: str):
response = supabase.table("ConversAI_ChatbotDataSources").delete().eq("dataSourceName", dataSourceName).execute()
response = supabase.storage.from_('ConversAI_ChatbotDataSources').remove(dataSourceName)
return {
"output": "SUCCESS"
}
class LoadEditedJson(BaseModel):
vectorstore: str
dataSourceName: str
sourceEndpoint: str
jsonData: dict[str, str]
@app.post("/loadEditedJson")
async def loadEditedJson(loadEditedJsonConfig: LoadEditedJson):
username, chatbotName = loadEditedJsonConfig.vectorstore.split("$")[1], loadEditedJsonConfig.vectorstore.split("$")[2]
jsonData = json.dumps(loadEditedJsonConfig.jsonData, indent = 1).encode("utf-8")
fileName = createDataSourceName(loadEditedJsonConfig.dataSourceName)
response = supabase.storage.from_("ConversAI").upload(file=jsonData, path=f"{fileName}_data.json")
response = (
supabase.table("ConversAI_ChatbotDataSources")
.insert({"username": username,
"chatbotName": chatbotName,
"dataSourceName": fileName,
"sourceEndpoint": loadEditedJsonConfig.sourceEndpoint,
"sourceContentURL": os.path.join(os.environ["SUPABASE_PUBLIC_BASE_URL"], f"{fileName}_data.json")})
.execute()
)
return {
"output": "SUCCESS"
}
class TrainChatbot(BaseModel):
vectorstore: str
urls: list[str]
@app.post("/trainChatbot")
async def trainChatbot(trainChatbotConfig: TrainChatbot):
vectorstore, UrlSources = trainChatbotConfig.vectorstore, trainChatbotConfig.urls
texts = []
sources = []
fileTypes = [supabase.table("ConversAI_ChatbotDataSources").select("sourceEndpoint").eq("sourceContentURL",
x).execute().data[0][
"sourceEndpoint"] for x in UrlSources]
for source, fileType in zip(UrlSources, fileTypes):
if ((fileType == "/loadPDF") | (fileType == "/loadImagePDF")):
r = requests.get(source)
file = eval(r.content.decode("utf-8"))
content = file["output"]
fileSource = file["source"]
texts.append(".".join(
[base64.b64decode(content[key].encode("utf-8")).decode("utf-8") for key in content.keys()]).replace(
"\n", " "))
sources.append(fileSource)
elif fileType == "/loadText":
r = requests.get(source)
file = eval(r.content.decode("utf-8"))
content = file["output"]
fileSource = file["source"]
texts.append(content.replace("\n", " "))
sources.append(fileSource)
elif ((fileType == "/loadWebURLs") | (fileType == "/loadYoutubeTranscript")):
r = requests.get(source)
file = eval(r.content.decode("utf-8"))
content = file["output"]
fileSource = file["source"]
texts.append(".".join(
[base64.b64decode(content[key].encode("utf-8")).decode("utf-8") for key in content.keys()]).replace(
"\n", " "))
sources.append(fileSource)
else:
pass
texts = [(text, source) for text, source in zip(texts, sources)]
return addDocuments(texts=texts, vectorstore=vectorstore)
def get_ip_info(ip: str):
try:
response = requests.get(f"https://ipinfo.io/{ip}/json")
data = response.json()
return data.get("city", "Unknown")
except Exception as e:
return "Unknown"
@app.post("/daily_chat_count")
async def daily_chat_count(
start_date: Optional[str] = Query(None, description="Start date in ISO format (YYYY-MM-DD)"),
end_date: Optional[str] = Query(None, description="End date in ISO format (YYYY-MM-DD)")
):
if not start_date or not end_date:
end_date = datetime.now().astimezone().date()
start_date = end_date - timedelta(days=7)
else:
start_date = isoparse(start_date).date()
end_date = isoparse(end_date).date()
response = supabase.table("ConversAI_ChatHistory").select("*").execute().data
dates = [
isoparse(i["timestamp"]).date()
for i in response
if start_date <= isoparse(i["timestamp"]).date() <= end_date
]
date_count = Counter(dates)
data = [{"date": date.isoformat(), "count": count} for date, count in date_count.items()]
return {"data": data}
@app.post("/daily_active_end_user")
async def daily_active_end_user(
start_date: Optional[str] = Query(None, description="Start date in ISO format (YYYY-MM-DD)"),
end_date: Optional[str] = Query(None, description="End date in ISO format (YYYY-MM-DD)")
):
if not start_date or not end_date:
end_date = datetime.now().astimezone().date()
start_date = end_date - timedelta(days=7)
else:
start_date = isoparse(start_date).date()
end_date = isoparse(end_date).date()
response = supabase.table("ConversAI_ChatHistory").select("*").execute().data
ip_by_date = defaultdict(set)
for i in response:
timestamp = isoparse(i["timestamp"])
ip_address = i["IpAddress"]
if start_date <= timestamp.date() <= end_date:
date = timestamp.date()
ip_by_date[date].add(ip_address)
data = [{"date": date.isoformat(), "terminal": len(ips)} for date, ips in ip_by_date.items() if len(ips) > 1]
return {"data": data}
@app.post("/average_session_interaction")
async def average_session_interaction(
start_date: Optional[str] = Query(None, description="Start date in ISO format (YYYY-MM-DD)"),
end_date: Optional[str] = Query(None, description="End date in ISO format (YYYY-MM-DD)")
):
if not start_date or not end_date:
end_date = datetime.now().astimezone().date()
start_date = end_date - timedelta(days=7)
else:
start_date = isoparse(start_date).date()
end_date = isoparse(end_date).date()
response = supabase.table("ConversAI_ChatHistory").select("*").execute().data
total_messages_by_date = defaultdict(int)
unique_ips_by_date = defaultdict(set)
for i in response:
timestamp = isoparse(i["timestamp"])
ip_address = i["IpAddress"]
if start_date <= timestamp.date() <= end_date:
date = timestamp.date()
total_messages_by_date[date] += 1
unique_ips_by_date[date].add(ip_address)
data = []
for date in sorted(total_messages_by_date.keys()):
total_messages = total_messages_by_date[date]
unique_ips = len(unique_ips_by_date[date])
average_interactions = total_messages / unique_ips if unique_ips > 0 else 0
data.append({"date": date.isoformat(), "interactions": average_interactions})
return {"data": data}
@app.post("/token_usages")
async def token_usages(
start_date: Optional[str] = Query(None, description="Start date in ISO format (YYYY-MM-DD)"),
end_date: Optional[str] = Query(None, description="End date in ISO format (YYYY-MM-DD)")
):
if not start_date or not end_date:
end_date = datetime.now().astimezone().date()
start_date = end_date - timedelta(days=7)
else:
start_date = isoparse(start_date).date()
end_date = isoparse(end_date).date()
response = supabase.table("ConversAI_ChatHistory").select("*").execute().data
token_usage_by_date = defaultdict(int)
for i in response:
timestamp = isoparse(i["timestamp"])
if start_date <= timestamp.date() <= end_date:
date = timestamp.date()
response_token_count = i.get("ResponseTokenCount")
if response_token_count is not None:
token_usage_by_date[date] += response_token_count
data = [{"date": date.isoformat(), "total_tokens": total_tokens} for date, total_tokens in
token_usage_by_date.items()]
return {"data": data}
@app.post("/add_feedback")
async def add_feedback(request: Request, feedback: str, user_id: str):
client_ip = request.client.host
city = get_ip_info(client_ip)
response = supabase.table("ConversAI_Feedback").insert(
{"feedback": feedback, "user_id": user_id, "city": city, "ip": client_ip}).execute()
return {"message": "success"}
@app.post("/user_satisfaction_rate")
async def user_satisfaction_rate(
start_date: Optional[str] = Query(None, description="Start date in ISO format (YYYY-MM-DD)"),
end_date: Optional[str] = Query(None, description="End date in ISO format (YYYY-MM-DD)")
):
if not start_date or not end_date:
end_date = datetime.now().astimezone().date()
start_date = end_date - timedelta(days=7)
else:
start_date = isoparse(start_date).date()
end_date = isoparse(end_date).date()
response = supabase.table("ConversAI_Feedback").select("*").execute().data
feedback_counts = defaultdict(lambda: {"like": 0, "dislike": 0})
for i in response:
timestamp = isoparse(i["timestamp"])
if start_date <= timestamp.date() <= end_date:
date = timestamp.date()
feedback = i.get("feedback")
if feedback == "like":
feedback_counts[date]["like"] += 1
elif feedback == "dislike":
feedback_counts[date]["dislike"] += 1
data = []
for date in sorted(feedback_counts.keys()):
like_count = feedback_counts[date]["like"]
dislike_count = feedback_counts[date]["dislike"]
total_feedback = like_count + dislike_count
satisfaction_rate = (like_count / total_feedback * 100) if total_feedback > 0 else 0
data.append({"date": date.isoformat(), "rate": satisfaction_rate})
return {"data": data} |