File size: 13,677 Bytes
07c6a04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
from typing import Any, Optional, Tuple

import torch
import torch.distributed as dist
import torch.nn.functional as F
from einops import rearrange
from torch import Tensor
from torch.distributed import ProcessGroup

from videosys.core.parallel_mgr import get_sequence_parallel_size

# ======================================================
# Model
# ======================================================


def model_sharding(model: torch.nn.Module):
    global_rank = dist.get_rank()
    world_size = dist.get_world_size()
    for _, param in model.named_parameters():
        padding_size = (world_size - param.numel() % world_size) % world_size
        if padding_size > 0:
            padding_param = torch.nn.functional.pad(param.data.view(-1), [0, padding_size])
        else:
            padding_param = param.data.view(-1)
        splited_params = padding_param.split(padding_param.numel() // world_size)
        splited_params = splited_params[global_rank]
        param.data = splited_params


# ======================================================
# AllGather & ReduceScatter
# ======================================================


class AsyncAllGatherForTwo(torch.autograd.Function):
    @staticmethod
    def forward(
        ctx: Any,
        inputs: Tensor,
        weight: Tensor,
        bias: Tensor,
        sp_rank: int,
        sp_size: int,
        group: Optional[ProcessGroup] = None,
    ) -> Tuple[Tensor, Any]:
        """
        Returns:
            outputs: Tensor
            handle: Optional[Work], if overlap is True
        """
        from torch.distributed._functional_collectives import all_gather_tensor

        ctx.group = group
        ctx.sp_rank = sp_rank
        ctx.sp_size = sp_size

        # all gather inputs
        all_inputs = all_gather_tensor(inputs.unsqueeze(0), 0, group)
        # compute local qkv
        local_qkv = F.linear(inputs, weight, bias).unsqueeze(0)

        # remote compute
        remote_inputs = all_inputs[1 - sp_rank].view(list(local_qkv.shape[:-1]) + [-1])
        # compute remote qkv
        remote_qkv = F.linear(remote_inputs, weight, bias)

        # concat local and remote qkv
        if sp_rank == 0:
            qkv = torch.cat([local_qkv, remote_qkv], dim=0)
        else:
            qkv = torch.cat([remote_qkv, local_qkv], dim=0)
        qkv = rearrange(qkv, "sp b n c -> b (sp n) c")

        ctx.save_for_backward(inputs, weight, remote_inputs)
        return qkv

    @staticmethod
    def backward(ctx: Any, *grad_outputs) -> Tuple[Tensor, None, None]:
        from torch.distributed._functional_collectives import reduce_scatter_tensor

        group = ctx.group
        sp_rank = ctx.sp_rank
        sp_size = ctx.sp_size
        inputs, weight, remote_inputs = ctx.saved_tensors

        # split qkv_grad
        qkv_grad = grad_outputs[0]
        qkv_grad = rearrange(qkv_grad, "b (sp n) c -> sp b n c", sp=sp_size)
        qkv_grad = torch.chunk(qkv_grad, 2, dim=0)
        if sp_rank == 0:
            local_qkv_grad, remote_qkv_grad = qkv_grad
        else:
            remote_qkv_grad, local_qkv_grad = qkv_grad

        # compute remote grad
        remote_inputs_grad = torch.matmul(remote_qkv_grad, weight).squeeze(0)
        weight_grad = torch.matmul(remote_qkv_grad.transpose(-1, -2), remote_inputs).squeeze(0).sum(0)
        bias_grad = remote_qkv_grad.squeeze(0).sum(0).sum(0)

        # launch async reduce scatter
        remote_inputs_grad_zero = torch.zeros_like(remote_inputs_grad)
        if sp_rank == 0:
            remote_inputs_grad = torch.cat([remote_inputs_grad_zero, remote_inputs_grad], dim=0)
        else:
            remote_inputs_grad = torch.cat([remote_inputs_grad, remote_inputs_grad_zero], dim=0)
        remote_inputs_grad = reduce_scatter_tensor(remote_inputs_grad, "sum", 0, group)

        # compute local grad and wait for reduce scatter
        local_input_grad = torch.matmul(local_qkv_grad, weight).squeeze(0)
        weight_grad += torch.matmul(local_qkv_grad.transpose(-1, -2), inputs).squeeze(0).sum(0)
        bias_grad += local_qkv_grad.squeeze(0).sum(0).sum(0)

        # sum remote and local grad
        inputs_grad = remote_inputs_grad + local_input_grad
        return inputs_grad, weight_grad, bias_grad, None, None, None


class AllGather(torch.autograd.Function):
    @staticmethod
    def forward(
        ctx: Any,
        inputs: Tensor,
        group: Optional[ProcessGroup] = None,
        overlap: bool = False,
    ) -> Tuple[Tensor, Any]:
        """
        Returns:
            outputs: Tensor
            handle: Optional[Work], if overlap is True
        """
        assert ctx is not None or not overlap

        if ctx is not None:
            ctx.comm_grp = group

        comm_size = dist.get_world_size(group)
        if comm_size == 1:
            return inputs.unsqueeze(0), None

        buffer_shape = (comm_size,) + inputs.shape
        outputs = torch.empty(buffer_shape, dtype=inputs.dtype, device=inputs.device)
        buffer_list = list(torch.chunk(outputs, comm_size, dim=0))
        if not overlap:
            dist.all_gather(buffer_list, inputs, group=group)
            return outputs, None
        else:
            handle = dist.all_gather(buffer_list, inputs, group=group, async_op=True)
            return outputs, handle

    @staticmethod
    def backward(ctx: Any, *grad_outputs) -> Tuple[Tensor, None, None]:
        return (
            ReduceScatter.forward(None, grad_outputs[0], ctx.comm_grp, False)[0],
            None,
            None,
        )


class ReduceScatter(torch.autograd.Function):
    @staticmethod
    def forward(
        ctx: Any,
        inputs: Tensor,
        group: ProcessGroup,
        overlap: bool = False,
    ) -> Tuple[Tensor, Any]:
        """
        Returns:
            outputs: Tensor
            handle: Optional[Work], if overlap is True
        """
        assert ctx is not None or not overlap

        if ctx is not None:
            ctx.comm_grp = group

        comm_size = dist.get_world_size(group)
        if comm_size == 1:
            return inputs.squeeze(0), None

        if not inputs.is_contiguous():
            inputs = inputs.contiguous()

        output_shape = inputs.shape[1:]
        outputs = torch.empty(output_shape, dtype=inputs.dtype, device=inputs.device)
        buffer_list = list(torch.chunk(inputs, comm_size, dim=0))
        if not overlap:
            dist.reduce_scatter(outputs, buffer_list, group=group)
            return outputs, None
        else:
            handle = dist.reduce_scatter(outputs, buffer_list, group=group, async_op=True)
            return outputs, handle

    @staticmethod
    def backward(ctx: Any, *grad_outputs) -> Tuple[Tensor, None, None]:
        # TODO: support async backward
        return (
            AllGather.forward(None, grad_outputs[0], ctx.comm_grp, False)[0],
            None,
            None,
        )


# ======================================================
# AlltoAll
# ======================================================


def _all_to_all_func(input_, world_size, group, scatter_dim, gather_dim):
    input_list = [t.contiguous() for t in torch.tensor_split(input_, world_size, scatter_dim)]
    output_list = [torch.empty_like(input_list[0]) for _ in range(world_size)]
    dist.all_to_all(output_list, input_list, group=group)
    return torch.cat(output_list, dim=gather_dim).contiguous()


class _AllToAll(torch.autograd.Function):
    """All-to-all communication.

    Args:
        input_: input matrix
        process_group: communication group
        scatter_dim: scatter dimension
        gather_dim: gather dimension
    """

    @staticmethod
    def forward(ctx, input_, process_group, scatter_dim, gather_dim):
        ctx.process_group = process_group
        ctx.scatter_dim = scatter_dim
        ctx.gather_dim = gather_dim
        world_size = dist.get_world_size(process_group)

        return _all_to_all_func(input_, world_size, process_group, scatter_dim, gather_dim)

    @staticmethod
    def backward(ctx, *grad_output):
        process_group = ctx.process_group
        scatter_dim = ctx.gather_dim
        gather_dim = ctx.scatter_dim
        return_grad = _AllToAll.apply(*grad_output, process_group, scatter_dim, gather_dim)
        return (return_grad, None, None, None)


def all_to_all_comm(input_, process_group=None, scatter_dim=2, gather_dim=1):
    return _AllToAll.apply(input_, process_group, scatter_dim, gather_dim)


# ======================================================
# Sequence Gather & Split
# ======================================================


def _split_sequence_func(input_, pg: dist.ProcessGroup, dim: int, pad: int):
    # skip if only one rank involved
    world_size = dist.get_world_size(pg)
    rank = dist.get_rank(pg)
    if world_size == 1:
        return input_

    if pad > 0:
        pad_size = list(input_.shape)
        pad_size[dim] = pad
        input_ = torch.cat([input_, torch.zeros(pad_size, dtype=input_.dtype, device=input_.device)], dim=dim)

    dim_size = input_.size(dim)
    assert dim_size % world_size == 0, f"dim_size ({dim_size}) is not divisible by world_size ({world_size})"

    tensor_list = torch.split(input_, dim_size // world_size, dim=dim)
    output = tensor_list[rank].contiguous()
    return output


def _gather_sequence_func(input_, pg: dist.ProcessGroup, dim: int, pad: int):
    # skip if only one rank involved
    input_ = input_.contiguous()
    world_size = dist.get_world_size(pg)
    dist.get_rank(pg)

    if world_size == 1:
        return input_

    # all gather
    tensor_list = [torch.empty_like(input_) for _ in range(world_size)]
    assert input_.device.type == "cuda"
    torch.distributed.all_gather(tensor_list, input_, group=pg)

    # concat
    output = torch.cat(tensor_list, dim=dim)

    if pad > 0:
        output = output.narrow(dim, 0, output.size(dim) - pad)

    return output


class _GatherForwardSplitBackward(torch.autograd.Function):
    """
    Gather the input sequence.

    Args:
        input_: input matrix.
        process_group: process group.
        dim: dimension
    """

    @staticmethod
    def symbolic(graph, input_):
        return _gather_sequence_func(input_)

    @staticmethod
    def forward(ctx, input_, process_group, dim, grad_scale, pad):
        ctx.process_group = process_group
        ctx.dim = dim
        ctx.grad_scale = grad_scale
        ctx.pad = pad
        return _gather_sequence_func(input_, process_group, dim, pad)

    @staticmethod
    def backward(ctx, grad_output):
        if ctx.grad_scale == "up":
            grad_output = grad_output * dist.get_world_size(ctx.process_group)
        elif ctx.grad_scale == "down":
            grad_output = grad_output / dist.get_world_size(ctx.process_group)

        return _split_sequence_func(grad_output, ctx.process_group, ctx.dim, ctx.pad), None, None, None, None


class _SplitForwardGatherBackward(torch.autograd.Function):
    """
    Split sequence.

    Args:
        input_: input matrix.
        process_group: parallel mode.
        dim: dimension
    """

    @staticmethod
    def symbolic(graph, input_):
        return _split_sequence_func(input_)

    @staticmethod
    def forward(ctx, input_, process_group, dim, grad_scale, pad):
        ctx.process_group = process_group
        ctx.dim = dim
        ctx.grad_scale = grad_scale
        ctx.pad = pad
        return _split_sequence_func(input_, process_group, dim, pad)

    @staticmethod
    def backward(ctx, grad_output):
        if ctx.grad_scale == "up":
            grad_output = grad_output * dist.get_world_size(ctx.process_group)
        elif ctx.grad_scale == "down":
            grad_output = grad_output / dist.get_world_size(ctx.process_group)
        return _gather_sequence_func(grad_output, ctx.process_group, ctx.pad), None, None, None, None


def split_sequence(input_, process_group, dim, grad_scale=1.0, pad=0):
    return _SplitForwardGatherBackward.apply(input_, process_group, dim, grad_scale, pad)


def gather_sequence(input_, process_group, dim, grad_scale=1.0, pad=0):
    return _GatherForwardSplitBackward.apply(input_, process_group, dim, grad_scale, pad)


# ==============================
# Pad
# ==============================

SPTIAL_PAD = 0
TEMPORAL_PAD = 0


def set_spatial_pad(dim_size: int):
    sp_size = get_sequence_parallel_size()
    pad = (sp_size - (dim_size % sp_size)) % sp_size
    global SPTIAL_PAD
    SPTIAL_PAD = pad


def get_spatial_pad() -> int:
    return SPTIAL_PAD


def set_temporal_pad(dim_size: int):
    sp_size = get_sequence_parallel_size()
    pad = (sp_size - (dim_size % sp_size)) % sp_size
    global TEMPORAL_PAD
    TEMPORAL_PAD = pad


def get_temporal_pad() -> int:
    return TEMPORAL_PAD


def all_to_all_with_pad(
    input_: torch.Tensor,
    process_group: dist.ProcessGroup,
    scatter_dim: int = 2,
    gather_dim: int = 1,
    scatter_pad: int = 0,
    gather_pad: int = 0,
):
    if scatter_pad > 0:
        pad_shape = list(input_.shape)
        pad_shape[scatter_dim] = scatter_pad
        pad_tensor = torch.zeros(pad_shape, device=input_.device, dtype=input_.dtype)
        input_ = torch.cat([input_, pad_tensor], dim=scatter_dim)

    assert (
        input_.shape[scatter_dim] % dist.get_world_size(process_group) == 0
    ), f"Dimension to scatter ({input_.shape[scatter_dim]}) is not divisible by world size ({dist.get_world_size(process_group)})"
    input_ = _AllToAll.apply(input_, process_group, scatter_dim, gather_dim)

    if gather_pad > 0:
        input_ = input_.narrow(gather_dim, 0, input_.size(gather_dim) - gather_pad)

    return input_