Teste / app.py
teixeiramg's picture
Update app.py
34e5d9c verified
raw
history blame
2.03 kB
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import fitz # PyMuPDF
# Carregar o tokenizer e o modelo
tokenizer = AutoTokenizer.from_pretrained("Locutusque/gpt2-xl-conversational")
model = AutoModelForCausalLM.from_pretrained("Locutusque/gpt2-xl-conversational")
# Variável global para armazenar o conteúdo do PDF
pdf_content = ""
# Função para ler o PDF
def read_pdf(file_path):
doc = fitz.open(file_path)
text = ""
for page_num in range(len(doc)):
page = doc.load_page(page_num)
text += page.get_text()
return text
# Função para carregar o PDF e armazenar o conteúdo
def load_pdf(pdf_file):
global pdf_content
pdf_content = read_pdf(pdf_file.name)
return "PDF carregado com sucesso!"
# Função para responder perguntas com base no conteúdo do PDF
def answer_question(question, max_length=200, temperature=0.7, top_k=50, top_p=0.95):
global pdf_content
if not pdf_content:
return "Por favor, carregue um PDF primeiro."
prompt = f"Conteúdo do PDF: {pdf_content}\nPergunta: {question}\nResposta em português:"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(
inputs.input_ids,
max_length=max_length,
temperature=temperature,
top_k=top_k,
top_p=top_p,
num_return_sequences=1
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
# Interface do Gradio para carregar PDF e fazer perguntas
pdf_loader = gr.Interface(
fn=load_pdf,
inputs=gr.File(label="Carregue um PDF"),
outputs="text",
title="Carregar PDF"
)
question_answerer = gr.Interface(
fn=answer_question,
inputs=gr.Textbox(lines=2, label="Pergunta"),
outputs="text",
title="Perguntas sobre o PDF"
)
# Combinar as interfaces em uma aplicação
iface = gr.TabbedInterface(
[pdf_loader, question_answerer],
["Carregar PDF", "Fazer Perguntas"]
)
if __name__ == "__main__":
iface.launch()