import spaces import gradio as gr from run import DepthCrafterDemo examples = [ ["examples/example_01.mp4", 25, 1.2, 1024, 195], ] def construct_demo(): with gr.Blocks(analytics_enabled=False) as depthcrafter_iface: gr.Markdown( """

DepthCrafter: Generating Consistent Long Depth Sequences for Open-world Videos

\

\ Wenbo Hu, \ Xiangjun Gao, \ Xiaoyu Li, \ Sijie Zhao, \ Xiaodong Cun, \ Yong Zhang, \ Long Quan, \ Ying Shan\

\ If you find DepthCrafter useful, please help star the \ [Github Repo]\ , which is important to Open-Source projects. Thanks!\ [ArXiv] \ [Project Page]
""" ) # demo depthcrafter_demo = DepthCrafterDemo( unet_path="tencent/DepthCrafter", pre_train_path="stabilityai/stable-video-diffusion-img2vid-xt", ) with gr.Row(equal_height=True): with gr.Column(scale=1): input_video = gr.Video(label="Input Video") # with gr.Tab(label="Output"): with gr.Column(scale=2): with gr.Row(equal_height=True): output_video_1 = gr.Video( label="Preprocessed video", interactive=False, autoplay=True, loop=True, show_share_button=True, scale=5, ) output_video_2 = gr.Video( label="Generated Depth Video", interactive=False, autoplay=True, loop=True, show_share_button=True, scale=5, ) with gr.Row(equal_height=True): with gr.Column(scale=1): with gr.Row(equal_height=False): with gr.Accordion("Advanced Settings", open=False): num_denoising_steps = gr.Slider( label="num denoising steps", minimum=1, maximum=25, value=25, step=1, ) guidance_scale = gr.Slider( label="cfg scale", minimum=1.0, maximum=1.2, value=1.2, step=0.1, ) max_res = gr.Slider( label="max resolution", minimum=512, maximum=2048, value=1024, step=64, ) process_length = gr.Slider( label="process length", minimum=1, maximum=280, value=195, step=1, ) generate_btn = gr.Button("Generate") with gr.Column(scale=2): pass gr.Examples( examples=examples, inputs=[ input_video, num_denoising_steps, guidance_scale, max_res, process_length, ], outputs=[output_video_1, output_video_2], fn=depthcrafter_demo.run, cache_examples=False, ) generate_btn.click( fn=depthcrafter_demo.run, inputs=[ input_video, num_denoising_steps, guidance_scale, max_res, process_length, ], outputs=[output_video_1, output_video_2], ) return depthcrafter_iface demo = construct_demo() if __name__ == "__main__": demo.queue() # demo.launch(server_name="0.0.0.0", server_port=80, debug=True) demo.launch(share=True)