Spaces:
Running
on
L40S
Running
on
L40S
File size: 11,280 Bytes
e3e5f9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
# Open Source Model Licensed under the Apache License Version 2.0 and Other Licenses of the Third-Party Components therein:
# The below Model in this distribution may have been modified by THL A29 Limited ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited.
# Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved.
# The below software and/or models in this distribution may have been
# modified by THL A29 Limited ("Tencent Modifications").
# All Tencent Modifications are Copyright (C) THL A29 Limited.
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.
# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
import os
import time
import math
import cv2
import numpy as np
import itertools
import shutil
from tqdm import tqdm
import torch
import torch.nn.functional as F
from einops import rearrange
try:
import trimesh
import mcubes
import xatlas
import open3d as o3d
except:
raise "failed to import 3d libraries "
from ..modules.rendering_neus.mesh import Mesh
from ..modules.rendering_neus.rasterize import NVDiffRasterizerContext
from ..utils.ops import scale_tensor
from ..util import count_params, instantiate_from_config
from ..vis_util import render
def unwrap_uv(v_pos, t_pos_idx):
print("Using xatlas to perform UV unwrapping, may take a while ...")
atlas = xatlas.Atlas()
atlas.add_mesh(v_pos, t_pos_idx)
atlas.generate(xatlas.ChartOptions(), xatlas.PackOptions())
_, indices, uvs = atlas.get_mesh(0)
indices = indices.astype(np.int64, casting="same_kind")
return uvs, indices
def uv_padding(image, hole_mask, uv_padding_size = 2):
return cv2.inpaint(
(image.detach().cpu().numpy() * 255).astype(np.uint8),
(hole_mask.detach().cpu().numpy() * 255).astype(np.uint8),
uv_padding_size,
cv2.INPAINT_TELEA
)
def refine_mesh(vtx_refine, faces_refine):
mesh = o3d.geometry.TriangleMesh(
vertices=o3d.utility.Vector3dVector(vtx_refine),
triangles=o3d.utility.Vector3iVector(faces_refine))
mesh = mesh.remove_unreferenced_vertices()
mesh = mesh.remove_duplicated_triangles()
mesh = mesh.remove_duplicated_vertices()
voxel_size = max(mesh.get_max_bound() - mesh.get_min_bound())
mesh = mesh.simplify_vertex_clustering(
voxel_size=0.007, # 0.005
contraction=o3d.geometry.SimplificationContraction.Average)
mesh = mesh.filter_smooth_simple(number_of_iterations=2)
vtx_refine = np.asarray(mesh.vertices).astype(np.float32)
faces_refine = np.asarray(mesh.triangles)
return vtx_refine, faces_refine, mesh
class SVRMModel(torch.nn.Module):
def __init__(
self,
img_encoder_config,
img_to_triplane_config,
render_config,
device = "cuda:0",
**kwargs
):
super(SVRMModel, self).__init__()
self.img_encoder = instantiate_from_config(img_encoder_config).half()
self.img_to_triplane_decoder = instantiate_from_config(img_to_triplane_config).half()
self.render = instantiate_from_config(render_config).half()
self.device = device
count_params(self, verbose=True)
@torch.no_grad()
def export_mesh_with_uv(
self,
data,
mesh_size: int = 384,
ctx = None,
context_type = 'cuda',
texture_res = 1024,
target_face_count = 10000,
do_texture_mapping = True,
out_dir = 'outputs/test'
):
"""
color_type: 0 for ray texture, 1 for vertices texture
"""
obj_vertext_path = os.path.join(out_dir, 'mesh_with_colors.obj')
obj_path = os.path.join(out_dir, 'mesh.obj')
obj_texture_path = os.path.join(out_dir, 'texture.png')
obj_mtl_path = os.path.join(out_dir, 'texture.mtl')
glb_path = os.path.join(out_dir, 'mesh.glb')
st = time.time()
here = {'device': self.device, 'dtype': torch.float16}
input_view_image = data["input_view"].to(**here) # [b, m, c, h, w]
input_view_cam = data["input_view_cam"].to(**here) # [b, m, 20]
batch_size, input_view_num, *_ = input_view_image.shape
assert batch_size == 1, "batch size should be 1"
input_view_image = rearrange(input_view_image, 'b m c h w -> (b m) c h w')
input_view_cam = rearrange(input_view_cam, 'b m d -> (b m) d')
input_view_feat = self.img_encoder(input_view_image, input_view_cam)
input_view_feat = rearrange(input_view_feat, '(b m) l d -> b (l m) d', m=input_view_num)
# -- decoder
torch.cuda.empty_cache()
triplane_gen = self.img_to_triplane_decoder(input_view_feat) # [b, 3, tri_dim, h, w]
del input_view_feat
torch.cuda.empty_cache()
# --- triplane nerf render
cur_triplane = triplane_gen[0:1]
aabb = torch.tensor([[-0.6, -0.6, -0.6], [0.6, 0.6, 0.6]]).unsqueeze(0).to(**here)
grid_out = self.render.forward_grid(planes=cur_triplane, grid_size=mesh_size, aabb=aabb)
print(f"=====> Triplane forward time: {time.time() - st}")
st = time.time()
vtx, faces = mcubes.marching_cubes(0. - grid_out['sdf'].squeeze(0).squeeze(-1).cpu().float().numpy(), 0)
bbox = aabb[0].cpu().numpy()
vtx = vtx / (mesh_size - 1)
vtx = vtx * (bbox[1] - bbox[0]) + bbox[0]
# refine mesh
vtx_refine, faces_refine, mesh = refine_mesh(vtx, faces)
# reduce faces
if faces_refine.shape[0] > target_face_count:
print(f"reduce face: {faces_refine.shape[0]} -> {target_face_count}")
mesh = o3d.geometry.TriangleMesh(
vertices = o3d.utility.Vector3dVector(vtx_refine),
triangles = o3d.utility.Vector3iVector(faces_refine)
)
# Function to simplify mesh using Quadric Error Metric Decimation by Garland and Heckbert
mesh = mesh.simplify_quadric_decimation(target_face_count, boundary_weight=1.0)
mesh = Mesh(
v_pos = torch.from_numpy(np.asarray(mesh.vertices)).to(self.device),
t_pos_idx = torch.from_numpy(np.asarray(mesh.triangles)).to(self.device),
v_rgb = torch.from_numpy(np.asarray(mesh.vertex_colors)).to(self.device)
)
vtx_refine = mesh.v_pos.cpu().numpy()
faces_refine = mesh.t_pos_idx.cpu().numpy()
vtx_colors = self.render.forward_points(cur_triplane, torch.tensor(vtx_refine).unsqueeze(0).to(**here))
vtx_colors = vtx_colors['rgb'].float().squeeze(0).cpu().numpy()
color_ratio = 0.8 # increase brightness
with open(obj_vertext_path, 'w') as fid:
verts = vtx_refine[:, [1,2,0]]
for pidx, pp in enumerate(verts):
color = vtx_colors[pidx]
color = [color[0]**color_ratio, color[1]**color_ratio, color[2]**color_ratio]
fid.write('v %f %f %f %f %f %f\n' % (pp[0], pp[1], pp[2], color[0], color[1], color[2]))
for i, f in enumerate(faces_refine):
f1 = f + 1
fid.write('f %d %d %d\n' % (f1[0], f1[1], f1[2]))
mesh = trimesh.load_mesh(obj_vertext_path)
print(f"=====> generate mesh with vertex shading time: {time.time() - st}")
st = time.time()
if not do_texture_mapping:
shutil.copy(obj_vertext_path, obj_path)
mesh.export(glb_path, file_type='glb')
return None
########## export texture ########
st = time.time()
# uv unwrap
vtx_tex, t_tex_idx = unwrap_uv(vtx_refine, faces_refine)
vtx_refine = torch.from_numpy(vtx_refine).to(self.device)
faces_refine = torch.from_numpy(faces_refine).to(self.device)
t_tex_idx = torch.from_numpy(t_tex_idx).to(self.device)
uv_clip = torch.from_numpy(vtx_tex * 2.0 - 1.0).to(self.device)
# rasterize
ctx = NVDiffRasterizerContext(context_type, cur_triplane.device) if ctx is None else ctx
rast = ctx.rasterize_one(
torch.cat([
uv_clip,
torch.zeros_like(uv_clip[..., 0:1]),
torch.ones_like(uv_clip[..., 0:1])
], dim=-1),
t_tex_idx,
(texture_res, texture_res)
)[0]
hole_mask = ~(rast[:, :, 3] > 0)
# Interpolate world space position
gb_pos = ctx.interpolate_one(vtx_refine, rast[None, ...], faces_refine)[0][0]
with torch.no_grad():
gb_mask_pos_scale = scale_tensor(gb_pos.unsqueeze(0).view(1, -1, 3), (-1, 1), (-1, 1))
tex_map = self.render.forward_points(cur_triplane, gb_mask_pos_scale)['rgb']
tex_map = tex_map.float().squeeze(0) # (0, 1)
tex_map = tex_map.view((texture_res, texture_res, 3))
img = uv_padding(tex_map, hole_mask)
img = ((img/255.0) ** color_ratio) * 255 # increase brightness
img = img.clip(0, 255).astype(np.uint8)
verts = vtx_refine.cpu().numpy()[:, [1,2,0]]
faces = faces_refine.cpu().numpy()
with open(obj_mtl_path, 'w') as fid:
fid.write('newmtl material_0\n')
fid.write("Ka 1.000 1.000 1.000\n")
fid.write("Kd 1.000 1.000 1.000\n")
fid.write("Ks 0.000 0.000 0.000\n")
fid.write("d 1.0\n")
fid.write("illum 2\n")
fid.write(f'map_Kd texture.png\n')
with open(obj_path, 'w') as fid:
fid.write(f'mtllib texture.mtl\n')
for pidx, pp in enumerate(verts):
fid.write('v %f %f %f\n' % (pp[0], pp[1], pp[2]))
for pidx, pp in enumerate(vtx_tex):
fid.write('vt %f %f\n' % (pp[0], 1 - pp[1]))
fid.write('usemtl material_0\n')
for i, f in enumerate(faces):
f1 = f + 1
f2 = t_tex_idx[i] + 1
fid.write('f %d/%d %d/%d %d/%d\n' % (f1[0], f2[0], f1[1], f2[1], f1[2], f2[2],))
cv2.imwrite(obj_texture_path, img[..., [2, 1, 0]])
mesh = trimesh.load_mesh(obj_path)
mesh.export(glb_path, file_type='glb')
print(f"=====> generate mesh with texture shading time: {time.time() - st}")
|