File size: 2,909 Bytes
0514ca2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# evaluation utilities
# --------------------------------------------------------
import numpy as np
import quaternion
import torch
import roma
import collections
import os


def aggregate_stats(info_str, pose_errors, angular_errors):
    stats = collections.Counter()
    median_pos_error = np.median(pose_errors)
    median_angular_error = np.median(angular_errors)
    out_str = f'{info_str}: {len(pose_errors)} images - {median_pos_error=}, {median_angular_error=}'

    for trl_thr, ang_thr in [(0.1, 1), (0.25, 2), (0.5, 5), (5, 10)]:
        for pose_error, angular_error in zip(pose_errors, angular_errors):
            correct_for_this_threshold = (pose_error < trl_thr) and (angular_error < ang_thr)
            stats[trl_thr, ang_thr] += correct_for_this_threshold
    stats = {f'acc@{key[0]:g}m,{key[1]}deg': 100 * val / len(pose_errors) for key, val in stats.items()}
    for metric, perf in stats.items():
        out_str += f'  - {metric:12s}={float(perf):.3f}'
    return out_str


def get_pose_error(pr_camtoworld, gt_cam_to_world):
    abs_transl_error = torch.linalg.norm(torch.tensor(pr_camtoworld[:3, 3]) - torch.tensor(gt_cam_to_world[:3, 3]))
    abs_angular_error = roma.rotmat_geodesic_distance(torch.tensor(pr_camtoworld[:3, :3]),
                                                      torch.tensor(gt_cam_to_world[:3, :3])) * 180 / np.pi
    return abs_transl_error, abs_angular_error


def export_results(output_dir, xp_label, query_names, poses_pred):
    if output_dir is not None:
        os.makedirs(output_dir, exist_ok=True)

        lines = ""
        lines_ltvl = ""
        for query_name, pr_querycam_to_world in zip(query_names, poses_pred):
            if pr_querycam_to_world is None:
                pr_world_to_querycam = np.eye(4)
            else:
                pr_world_to_querycam = np.linalg.inv(pr_querycam_to_world)
            query_shortname = os.path.basename(query_name)
            pr_world_to_querycam_q = quaternion.from_rotation_matrix(pr_world_to_querycam[:3, :3])
            pr_world_to_querycam_t = pr_world_to_querycam[:3, 3]

            line_pose = quaternion.as_float_array(pr_world_to_querycam_q).tolist() + \
                pr_world_to_querycam_t.flatten().tolist()

            line_content = [query_name] + line_pose
            lines += ' '.join(str(v) for v in line_content) + '\n'

            line_content_ltvl = [query_shortname] + line_pose
            lines_ltvl += ' '.join(str(v) for v in line_content_ltvl) + '\n'

        with open(os.path.join(output_dir, xp_label + '_results.txt'), 'wt') as f:
            f.write(lines)
        with open(os.path.join(output_dir, xp_label + '_ltvl.txt'), 'wt') as f:
            f.write(lines_ltvl)