File size: 10,692 Bytes
68cd723
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import os, sys, time
from typing import List, Optional
from iopath.common.file_io import PathManager

import cv2
import imageio
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt

import torch
import torch.nn.functional as F
from torchvision import transforms

import trimesh
from pytorch3d.io import load_objs_as_meshes, load_obj, save_obj
from pytorch3d.ops import interpolate_face_attributes
from pytorch3d.common.datatypes import Device
from pytorch3d.structures import Meshes
from pytorch3d.renderer import (
    look_at_view_transform,
    FoVPerspectiveCameras,
    PointLights,
    DirectionalLights,
    AmbientLights,
    Materials,
    RasterizationSettings,
    MeshRenderer,
    MeshRasterizer,
    SoftPhongShader,
    TexturesUV,
    TexturesVertex,
    camera_position_from_spherical_angles,
    BlendParams,
)


def erode_mask(src_mask, p=1 / 20.0):
    monoMaskImage = cv2.split(src_mask)[0]
    br = cv2.boundingRect(monoMaskImage)
    k = int(min(br[2], br[3]) * p)
    kernel = np.ones((k, k), dtype=np.uint8)
    dst_mask = cv2.erode(src_mask, kernel, 1)
    return dst_mask

def load_objs_as_meshes_fast(
    verts,
    faces,
    aux,
    device: Optional[Device] = None,
    load_textures: bool = True,
    create_texture_atlas: bool = False,
    texture_atlas_size: int = 4,
    texture_wrap: Optional[str] = "repeat",
    path_manager: Optional[PathManager] = None,
):
    tex = None
    if create_texture_atlas:
        # TexturesAtlas type
        tex = TexturesAtlas(atlas=[aux.texture_atlas.to(device)])
    else:
        # TexturesUV type
        tex_maps = aux.texture_images
        if tex_maps is not None and len(tex_maps) > 0:
            verts_uvs = aux.verts_uvs.to(device)  # (V, 2)
            faces_uvs = faces.textures_idx.to(device)  # (F, 3)
            image = list(tex_maps.values())[0].to(device)[None]
            tex = TexturesUV(verts_uvs=[verts_uvs], faces_uvs=[faces_uvs], maps=image)
    mesh = Meshes( verts=[verts.to(device)], faces=[faces.verts_idx.to(device)], textures=tex)
    return mesh


def get_triangle_to_triangle(tri_1, tri_2, img_refined):
    '''
        args:
            tri_1: 
            tri_2: 
    '''
    r1 = cv2.boundingRect(tri_1)
    r2 = cv2.boundingRect(tri_2)
    
    tri_1_cropped = []
    tri_2_cropped = []
    for i in range(0, 3):
        tri_1_cropped.append(((tri_1[i][1] - r1[1]), (tri_1[i][0] - r1[0])))
        tri_2_cropped.append(((tri_2[i][1] - r2[1]), (tri_2[i][0] - r2[0])))

    trans = cv2.getAffineTransform(np.float32(tri_1_cropped), np.float32(tri_2_cropped))

    img_1_cropped = np.float32(img_refined[r1[0]:r1[0] + r1[2], r1[1]:r1[1] + r1[3]])
    
    mask = np.zeros((r2[2], r2[3], 3), dtype=np.float32)
    
    cv2.fillConvexPoly(mask, np.int32(tri_2_cropped), (1.0, 1.0, 1.0), 16, 0)
    
    img_2_cropped = cv2.warpAffine(
        img_1_cropped, trans, (r2[3], r2[2]), None, 
        flags = cv2.INTER_LINEAR,
        borderMode = cv2.BORDER_REFLECT_101
    )
    return mask, img_2_cropped, r2


def back_projection(
    obj_file, 
    init_texture_file, 
    front_view_file, 
    dst_dir, 
    render_resolution=512, 
    uv_resolution=600, 
    normalThreshold=0.3, # 0.3 
    rgb_thresh=820, # 520
    views=None, 
    camera_dist=1.5, 
    erode_scale=1/100.0, 
    device="cuda:0"
):
    # obj_file: 带有uv的obj
    # init_texture_file: 初始展开的uv贴图
    # render_resolution 正面视角渲染分辨率
    # uv_resolution 贴图分辨率
    # thres:normal threshold

    os.makedirs(dst_dir, exist_ok=True)

    if isinstance(front_view_file, str):
        src = np.array(Image.open(front_view_file).convert("RGB"))
    elif isinstance(front_view_file, Image.Image):
        src = np.array(front_view_file.convert("RGB"))
    else:
        raise "need file_path or pil"
    
    image_size = (render_resolution, render_resolution)

    init_texture = Image.open(init_texture_file)
    init_texture = init_texture.convert("RGB")
    # init_texture = init_texture.resize((uv_resolution, uv_resolution))
    init_texture = np.array(init_texture).astype(np.float32)  
    
    print("load obj", obj_file)
    verts, faces, aux = load_obj(obj_file, device=device)
    mesh = load_objs_as_meshes_fast(verts, faces, aux, device=device)


    t0 = time.time()
    verts_uvs = aux.verts_uvs
    triangle_uvs = verts_uvs[faces.textures_idx]
    triangle_uvs = torch.cat([
        ((1 - triangle_uvs[..., 1]) * uv_resolution).unsqueeze(2),
        (triangle_uvs[..., 0] * uv_resolution).unsqueeze(2),
    ], dim=-1)
    triangle_uvs = np.clip(np.round(np.float32(triangle_uvs.cpu())).astype(np.int64), 0, uv_resolution-1)

    # import ipdb;ipdb.set_trace()

    
    R0, T0 = look_at_view_transform(camera_dist, views[0][0], views[0][1])

    cameras = FoVPerspectiveCameras(device=device, R=R0, T=T0, fov=49.1)
    
    camera_normal = camera_position_from_spherical_angles(1, views[0][0], views[0][1]).to(device)
    screen_coords = cameras.transform_points_screen(verts, image_size=image_size)[:, :2]
    screen_coords = torch.cat([screen_coords[..., 1, None], screen_coords[..., 0, None]], dim=-1)
    triangle_screen_coords = np.round(np.float32(screen_coords[faces.verts_idx].cpu())) # numpy.ndarray (90000, 3, 2)
    triangle_screen_coords = np.clip(triangle_screen_coords.astype(np.int64), 0, render_resolution-1)

    renderer = MeshRenderer(
        rasterizer=MeshRasterizer(
            cameras=cameras,
            raster_settings= RasterizationSettings(
                image_size=image_size,
                blur_radius=0.0,
                faces_per_pixel=1,
            ),
        ),
        shader=SoftPhongShader(
            device=device,
            cameras=cameras,
            lights= AmbientLights(device=device),
            blend_params=BlendParams(background_color=(1.0, 1.0, 1.0)),
        )
    )

    dst = renderer(mesh)
    dst = (dst[..., :3] * 255).squeeze(0).cpu().numpy().astype(np.uint8)

    src_mask = np.ones((src.shape[0], src.shape[1]), dst.dtype)
    ids = np.where(dst.sum(-1) > 253 * 3)
    ids2 = np.where(src.sum(-1) > 250 * 3)
    src_mask[ids[0], ids[1]] = 0
    src_mask[ids2[0], ids2[1]] = 0
    src_mask = (src_mask > 0).astype(np.uint8) * 255
    
    monoMaskImage = cv2.split(src_mask)[0] # reducing the mask to a monochrome
    br = cv2.boundingRect(monoMaskImage) # bounding rect (x,y,width,height)
    center = (br[0] + br[2] // 2, br[1] + br[3] // 2)
 
    # seamlessClone
    try:
        images = cv2.seamlessClone(src, dst, src_mask, center, cv2.NORMAL_CLONE) # more qingxi
        # images = cv2.seamlessClone(src, dst, src_mask, center, cv2.MIXED_CLONE)
    except Exception as err:
        print(f"\n\n Warning seamlessClone error: {err} \n\n")
        images = src

    Image.fromarray(src_mask).save(os.path.join(dst_dir, 'mask.jpeg'))
    Image.fromarray(src).save(os.path.join(dst_dir, 'src.jpeg'))
    Image.fromarray(dst).save(os.path.join(dst_dir, 'dst.jpeg'))
    Image.fromarray(images).save(os.path.join(dst_dir, 'blend.jpeg'))

    fragments_scaled = renderer.rasterizer(mesh)  # pytorch3d.renderer.mesh.rasterizer.Fragments
    faces_covered = fragments_scaled.pix_to_face.unique()[1:] # torch.Tensor torch.Size([30025])
    face_normals = mesh.faces_normals_packed().to(device) # torch.Tensor torch.Size([90000, 3]) cuda:0

    # faces:              pytorch3d.io.obj_io.Faces
    # faces.textures_idx: torch.Tensor torch.Size([90000, 3])
    # verts_uvs:          torch.Tensor torch.Size([49554, 2])
    triangle_uvs = verts_uvs[faces.textures_idx]
    triangle_uvs = [
        ((1 - triangle_uvs[..., 1]) * uv_resolution).unsqueeze(2),
        (triangle_uvs[..., 0] * uv_resolution).unsqueeze(2),
    ]
    triangle_uvs = torch.cat(triangle_uvs, dim=-1) # numpy.ndarray (90000, 3, 2)
    triangle_uvs = np.clip(np.round(np.float32(triangle_uvs.cpu())).astype(np.int64), 0, uv_resolution-1)
    
    t0 = time.time()
    
    
    SOFT_NORM = True # process big angle-diff face, true:flase? coeff:skip
    
    for k in faces_covered:
        # todo: accelerate this for-loop
        # if cosine between face-camera is too low, skip current face baking
        face_normal = face_normals[k]
        cosine = torch.sum((face_normal * camera_normal) ** 2)
        if not SOFT_NORM and cosine < normalThreshold: continue

        # if coord in screen out of subject, skip current face baking
        out_of_subject = src_mask[triangle_screen_coords[k][0][0], triangle_screen_coords[k][0][1]]==0
        if out_of_subject: continue
            
        coeff, img_2_cropped, r2 = get_triangle_to_triangle(triangle_screen_coords[k], triangle_uvs[k], images)
        
        # if color difference between new-old, skip current face baking
        err = np.abs(init_texture[r2[0]:r2[0]+r2[2], r2[1]:r2[1]+r2[3]]- img_2_cropped)
        err = (err * coeff).sum(-1)
        
        # print(err.shape, np.max(err))
        if (np.max(err) > rgb_thresh): continue
        
        color_for_debug = None
        # if (np.max(err) > 400): color_for_debug = [255, 0, 0]
        # if (np.max(err) > 450): color_for_debug = [0, 255, 0]
        # if (np.max(err) > 500): color_for_debug = [0, 0, 255]

        coeff = coeff.clip(0, 1)
        
        if SOFT_NORM:
            coeff *= ((cosine.detach().cpu().numpy() - normalThreshold) / normalThreshold).clip(0,1)

        coeff *= (((rgb_thresh - err[...,None]) / rgb_thresh)**0.4).clip(0,1)

        if color_for_debug is None:
            init_texture[r2[0]:r2[0]+r2[2], r2[1]:r2[1]+r2[3]] = \
                init_texture[r2[0]:r2[0]+r2[2], r2[1]:r2[1]+r2[3]] * ((1.0,1.0,1.0)-coeff) + img_2_cropped * coeff
        else:
            init_texture[r2[0]:r2[0]+r2[2], r2[1]:r2[1]+r2[3]] = color_for_debug

    print(f'View baking time: {time.time() - t0}')

    bake_dir = os.path.join(dst_dir, 'bake')
    os.makedirs(bake_dir, exist_ok=True)
    os.system(f'cp {obj_file} {bake_dir}')
    
    textute_img = Image.fromarray(init_texture.astype(np.uint8))
    textute_img.save(os.path.join(bake_dir, init_texture_file.split("/")[-1]))
    
    mtl_dir = obj_file.replace('.obj', '.mtl')
    if not os.path.exists(mtl_dir): mtl_dir = obj_file.replace("mesh.obj" ,"material.mtl")
    if not os.path.exists(mtl_dir): mtl_dir = obj_file.replace("mesh.obj" ,"texture.mtl")
    if not os.path.exists(mtl_dir): import ipdb;ipdb.set_trace()
    os.system(f'cp {mtl_dir} {bake_dir}')

    # convert .obj to .glb file
    new_obj_pth = os.path.join(bake_dir, obj_file.split('/')[-1])
    new_glb_path = new_obj_pth.replace('.obj', '.glb')
    mesh = trimesh.load_mesh(new_obj_pth)
    mesh.export(new_glb_path, file_type='glb')