Spaces:
Running
on
L40S
Running
on
L40S
File size: 7,153 Bytes
68cd723 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
import os
import cv2
import numpy as np
from skimage.metrics import hausdorff_distance
from matplotlib import pyplot as plt
def get_input_imgs_path(input_data_dir):
path = {}
names = ['000', 'ori_000']
for name in names:
jpg_path = os.path.join(input_data_dir, f"{name}.jpg")
png_path = os.path.join(input_data_dir, f"{name}.png")
if os.path.exists(jpg_path):
path[name] = jpg_path
elif os.path.exists(png_path):
path[name] = png_path
return path
def rgba_to_rgb(image, bg_color=[255, 255, 255]):
if image.shape[-1] == 3: return image
rgba = image.astype(float)
rgb = rgba[:, :, :3].copy()
alpha = rgba[:, :, 3] / 255.0
bg = np.ones((image.shape[0], image.shape[1], 3), dtype=np.float32)
bg = bg * np.array(bg_color, dtype=np.float32)
rgb = rgb * alpha[:, :, np.newaxis] + bg * (1 - alpha[:, :, np.newaxis])
rgb = rgb.astype(np.uint8)
return rgb
def resize_with_aspect_ratio(image1, image2, pad_value=[255, 255, 255]):
aspect_ratio1 = float(image1.shape[1]) / float(image1.shape[0])
aspect_ratio2 = float(image2.shape[1]) / float(image2.shape[0])
top_pad, bottom_pad, left_pad, right_pad = 0, 0, 0, 0
if aspect_ratio1 < aspect_ratio2:
new_width = (aspect_ratio2 * image1.shape[0])
right_pad = left_pad = int((new_width - image1.shape[1]) / 2)
else:
new_height = (image1.shape[1] / aspect_ratio2)
bottom_pad = top_pad = int((new_height - image1.shape[0]) / 2)
image1_padded = cv2.copyMakeBorder(
image1, top_pad, bottom_pad, left_pad, right_pad, cv2.BORDER_CONSTANT, value=pad_value
)
return image1_padded
def estimate_img_mask(image):
# to gray
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# segment
# _, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
# mask_otsu = thresh.astype(bool)
# thresh_gray = 240
edges = cv2.Canny(gray, 20, 50)
kernel = np.ones((3, 3), np.uint8)
edges_dilated = cv2.dilate(edges, kernel, iterations=1)
contours, _ = cv2.findContours(edges_dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
mask = np.zeros_like(gray, dtype=np.uint8)
cv2.drawContours(mask, contours, -1, 255, thickness=cv2.FILLED)
mask = mask.astype(bool)
return mask
def compute_img_diff(img1, img2, matches1, matches1_from_2, vis=False):
scale = 0.125
gray_trunc_thres = 25 / 255.0
# Match
if matches1.shape[0] > 0:
match_scale = np.max(np.ptp(matches1, axis=-1))
match_dists = np.sqrt(np.sum((matches1 - matches1_from_2) ** 2, axis=-1))
dist_threshold = match_scale * 0.01
match_num = np.sum(match_dists <= dist_threshold)
match_rate = np.mean(match_dists <= dist_threshold)
else:
match_num = 0
match_rate = 0
# IOU
img1_mask = estimate_img_mask(img1)
img2_mask = estimate_img_mask(img2)
img_intersection = (img1_mask == 1) & (img2_mask == 1)
img_union = (img1_mask == 1) | (img2_mask == 1)
intersection = np.sum(img_intersection == 1)
union = np.sum(img_union == 1)
mask_iou = intersection / union if union != 0 else 0
# Gray
height, width = img1.shape[:2]
img1_gray = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
img2_gray = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
img1_gray = cv2.GaussianBlur(img1_gray, (7, 7), 0)
img2_gray = cv2.GaussianBlur(img2_gray, (7, 7), 0)
# Gray Diff
img1_gray_small = cv2.resize(img1_gray, (int(width * scale), int(height * scale)),
interpolation=cv2.INTER_LINEAR) / 255.0
img2_gray_small = cv2.resize(img2_gray, (int(width * scale), int(height * scale)),
interpolation=cv2.INTER_LINEAR) / 255.0
img_gray_small_diff = np.abs(img1_gray_small - img2_gray_small)
gray_diff = img_gray_small_diff.sum() / (union * scale) if union != 0 else 1
img_gray_small_diff_trunc = img_gray_small_diff.copy()
img_gray_small_diff_trunc[img_gray_small_diff < gray_trunc_thres] = 0
gray_diff_trunc = img_gray_small_diff_trunc.sum() / (union * scale) if union != 0 else 1
# Edge
img1_edge = cv2.Canny(img1_gray, 100, 200)
img2_edge = cv2.Canny(img2_gray, 100, 200)
bw_edges1 = (img1_edge > 0).astype(bool)
bw_edges2 = (img2_edge > 0).astype(bool)
hausdorff_dist = hausdorff_distance(bw_edges1, bw_edges2)
if vis == True:
fig, axs = plt.subplots(1, 4, figsize=(15, 5))
axs[0].imshow(img1_gray, cmap='gray')
axs[0].set_title('Img1')
axs[1].imshow(img2_gray, cmap='gray')
axs[1].set_title('Img2')
axs[2].imshow(img1_mask)
axs[2].set_title('Mask1')
axs[3].imshow(img2_mask)
axs[3].set_title('Mask2')
plt.show()
plt.figure()
mask_cmp = np.zeros((height, width, 3))
mask_cmp[img_intersection, 1] = 1
mask_cmp[img_union, 0] = 1
plt.imshow(mask_cmp)
plt.show()
fig, axs = plt.subplots(1, 4, figsize=(15, 5))
axs[0].imshow(img1_gray_small, cmap='gray')
axs[0].set_title('Img1 Gray')
axs[1].imshow(img2_gray_small, cmap='gray')
axs[1].set_title('Img2 Gary')
axs[2].imshow(img_gray_small_diff, cmap='gray')
axs[2].set_title('diff')
axs[3].imshow(img_gray_small_diff_trunc, cmap='gray')
axs[3].set_title('diff_trunct')
plt.show()
fig, axs = plt.subplots(1, 2, figsize=(15, 5))
axs[0].imshow(img1_edge, cmap='gray')
axs[0].set_title('img1_edge')
axs[1].imshow(img2_edge, cmap='gray')
axs[1].set_title('img2_edge')
plt.show()
info = {}
info['match_num'] = match_num
info['match_rate'] = match_rate
info['mask_iou'] = mask_iou
info['gray_diff'] = gray_diff
info['gray_diff_trunc'] = gray_diff_trunc
info['hausdorff_dist'] = hausdorff_dist
return info
def predict_match_success_human(info):
match_num = info['match_num']
match_rate = info['match_rate']
mask_iou = info['mask_iou']
gray_diff = info['gray_diff']
gray_diff_trunc = info['gray_diff_trunc']
hausdorff_dist = info['hausdorff_dist']
if mask_iou > 0.95:
return True
if match_num < 20 or match_rate < 0.7:
return False
if mask_iou > 0.80 and gray_diff < 0.040 and gray_diff_trunc < 0.010:
return True
if mask_iou > 0.70 and gray_diff < 0.050 and gray_diff_trunc < 0.008:
return True
'''
if match_rate<0.70 or match_num<3000:
return False
if (mask_iou>0.85 and hausdorff_dist<20)or (gray_diff<0.015 and gray_diff_trunc<0.01) or match_rate>=0.90:
return True
'''
return False
def predict_match_success(info, model=None):
if model == None:
return predict_match_success_human(info)
else:
feat_name = ['match_num', 'match_rate', 'mask_iou', 'gray_diff', 'gray_diff_trunc', 'hausdorff_dist']
features = [info[f] for f in feat_name]
pred = model.predict([features])[0]
return pred >= 0.5 |