Spaces:
Running
on
L40S
Running
on
L40S
File size: 15,666 Bytes
0514ca2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 |
#!/usr/bin/env python3
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# Script to pre-process the scannet++ dataset.
# Usage:
# python3 datasets_preprocess/preprocess_scannetpp.py --scannetpp_dir /path/to/scannetpp --precomputed_pairs /path/to/scannetpp_pairs --pyopengl-platform egl
# --------------------------------------------------------
import os
import argparse
import os.path as osp
import re
from tqdm import tqdm
import json
from scipy.spatial.transform import Rotation
import pyrender
import trimesh
import trimesh.exchange.ply
import numpy as np
import cv2
import PIL.Image as Image
from dust3r.datasets.utils.cropping import rescale_image_depthmap
import dust3r.utils.geometry as geometry
inv = np.linalg.inv
norm = np.linalg.norm
REGEXPR_DSLR = re.compile(r'^DSC(?P<frameid>\d+).JPG$')
REGEXPR_IPHONE = re.compile(r'frame_(?P<frameid>\d+).jpg$')
DEBUG_VIZ = None # 'iou'
if DEBUG_VIZ is not None:
import matplotlib.pyplot as plt # noqa
OPENGL_TO_OPENCV = np.float32([[1, 0, 0, 0],
[0, -1, 0, 0],
[0, 0, -1, 0],
[0, 0, 0, 1]])
def get_parser():
parser = argparse.ArgumentParser()
parser.add_argument('--scannetpp_dir', required=True)
parser.add_argument('--precomputed_pairs', required=True)
parser.add_argument('--output_dir', default='data/scannetpp_processed')
parser.add_argument('--target_resolution', default=920, type=int, help="images resolution")
parser.add_argument('--pyopengl-platform', type=str, default='', help='PyOpenGL env variable')
return parser
def pose_from_qwxyz_txyz(elems):
qw, qx, qy, qz, tx, ty, tz = map(float, elems)
pose = np.eye(4)
pose[:3, :3] = Rotation.from_quat((qx, qy, qz, qw)).as_matrix()
pose[:3, 3] = (tx, ty, tz)
return np.linalg.inv(pose) # returns cam2world
def get_frame_number(name, cam_type='dslr'):
if cam_type == 'dslr':
regex_expr = REGEXPR_DSLR
elif cam_type == 'iphone':
regex_expr = REGEXPR_IPHONE
else:
raise NotImplementedError(f'wrong {cam_type=} for get_frame_number')
matches = re.match(regex_expr, name)
return matches['frameid']
def load_sfm(sfm_dir, cam_type='dslr'):
# load cameras
with open(osp.join(sfm_dir, 'cameras.txt'), 'r') as f:
raw = f.read().splitlines()[3:] # skip header
intrinsics = {}
for camera in tqdm(raw, position=1, leave=False):
camera = camera.split(' ')
intrinsics[int(camera[0])] = [camera[1]] + [float(cam) for cam in camera[2:]]
# load images
with open(os.path.join(sfm_dir, 'images.txt'), 'r') as f:
raw = f.read().splitlines()
raw = [line for line in raw if not line.startswith('#')] # skip header
img_idx = {}
img_infos = {}
for image, points in tqdm(zip(raw[0::2], raw[1::2]), total=len(raw) // 2, position=1, leave=False):
image = image.split(' ')
points = points.split(' ')
idx = image[0]
img_name = image[-1]
assert img_name not in img_idx, 'duplicate db image: ' + img_name
img_idx[img_name] = idx # register image name
current_points2D = {int(i): (float(x), float(y))
for i, x, y in zip(points[2::3], points[0::3], points[1::3]) if i != '-1'}
img_infos[idx] = dict(intrinsics=intrinsics[int(image[-2])],
path=img_name,
frame_id=get_frame_number(img_name, cam_type),
cam_to_world=pose_from_qwxyz_txyz(image[1: -2]),
sparse_pts2d=current_points2D)
# load 3D points
with open(os.path.join(sfm_dir, 'points3D.txt'), 'r') as f:
raw = f.read().splitlines()
raw = [line for line in raw if not line.startswith('#')] # skip header
points3D = {}
observations = {idx: [] for idx in img_infos.keys()}
for point in tqdm(raw, position=1, leave=False):
point = point.split()
point_3d_idx = int(point[0])
points3D[point_3d_idx] = tuple(map(float, point[1:4]))
if len(point) > 8:
for idx, point_2d_idx in zip(point[8::2], point[9::2]):
observations[idx].append((point_3d_idx, int(point_2d_idx)))
return img_idx, img_infos, points3D, observations
def subsample_img_infos(img_infos, num_images, allowed_name_subset=None):
img_infos_val = [(idx, val) for idx, val in img_infos.items()]
if allowed_name_subset is not None:
img_infos_val = [(idx, val) for idx, val in img_infos_val if val['path'] in allowed_name_subset]
if len(img_infos_val) > num_images:
img_infos_val = sorted(img_infos_val, key=lambda x: x[1]['frame_id'])
kept_idx = np.round(np.linspace(0, len(img_infos_val) - 1, num_images)).astype(int).tolist()
img_infos_val = [img_infos_val[idx] for idx in kept_idx]
return {idx: val for idx, val in img_infos_val}
def undistort_images(intrinsics, rgb, mask):
camera_type = intrinsics[0]
width = int(intrinsics[1])
height = int(intrinsics[2])
fx = intrinsics[3]
fy = intrinsics[4]
cx = intrinsics[5]
cy = intrinsics[6]
distortion = np.array(intrinsics[7:])
K = np.zeros([3, 3])
K[0, 0] = fx
K[0, 2] = cx
K[1, 1] = fy
K[1, 2] = cy
K[2, 2] = 1
K = geometry.colmap_to_opencv_intrinsics(K)
if camera_type == "OPENCV_FISHEYE":
assert len(distortion) == 4
new_K = cv2.fisheye.estimateNewCameraMatrixForUndistortRectify(
K,
distortion,
(width, height),
np.eye(3),
balance=0.0,
)
# Make the cx and cy to be the center of the image
new_K[0, 2] = width / 2.0
new_K[1, 2] = height / 2.0
map1, map2 = cv2.fisheye.initUndistortRectifyMap(K, distortion, np.eye(3), new_K, (width, height), cv2.CV_32FC1)
else:
new_K, _ = cv2.getOptimalNewCameraMatrix(K, distortion, (width, height), 1, (width, height), True)
map1, map2 = cv2.initUndistortRectifyMap(K, distortion, np.eye(3), new_K, (width, height), cv2.CV_32FC1)
undistorted_image = cv2.remap(rgb, map1, map2, interpolation=cv2.INTER_LINEAR, borderMode=cv2.BORDER_REFLECT_101)
undistorted_mask = cv2.remap(mask, map1, map2, interpolation=cv2.INTER_LINEAR,
borderMode=cv2.BORDER_CONSTANT, borderValue=255)
new_K = geometry.opencv_to_colmap_intrinsics(new_K)
return width, height, new_K, undistorted_image, undistorted_mask
def process_scenes(root, pairsdir, output_dir, target_resolution):
os.makedirs(output_dir, exist_ok=True)
# default values from
# https://github.com/scannetpp/scannetpp/blob/main/common/configs/render.yml
znear = 0.05
zfar = 20.0
listfile = osp.join(pairsdir, 'scene_list.json')
with open(listfile, 'r') as f:
scenes = json.load(f)
# for each of these, we will select some dslr images and some iphone images
# we will undistort them and render their depth
renderer = pyrender.OffscreenRenderer(0, 0)
for scene in tqdm(scenes, position=0, leave=True):
data_dir = os.path.join(root, 'data', scene)
dir_dslr = os.path.join(data_dir, 'dslr')
dir_iphone = os.path.join(data_dir, 'iphone')
dir_scans = os.path.join(data_dir, 'scans')
assert os.path.isdir(data_dir) and os.path.isdir(dir_dslr) \
and os.path.isdir(dir_iphone) and os.path.isdir(dir_scans)
output_dir_scene = os.path.join(output_dir, scene)
scene_metadata_path = osp.join(output_dir_scene, 'scene_metadata.npz')
if osp.isfile(scene_metadata_path):
continue
pairs_dir_scene = os.path.join(pairsdir, scene)
pairs_dir_scene_selected_pairs = os.path.join(pairs_dir_scene, 'selected_pairs.npz')
assert osp.isfile(pairs_dir_scene_selected_pairs)
selected_npz = np.load(pairs_dir_scene_selected_pairs)
selection, pairs = selected_npz['selection'], selected_npz['pairs']
# set up the output paths
output_dir_scene_rgb = os.path.join(output_dir_scene, 'images')
output_dir_scene_depth = os.path.join(output_dir_scene, 'depth')
os.makedirs(output_dir_scene_rgb, exist_ok=True)
os.makedirs(output_dir_scene_depth, exist_ok=True)
ply_path = os.path.join(dir_scans, 'mesh_aligned_0.05.ply')
sfm_dir_dslr = os.path.join(dir_dslr, 'colmap')
rgb_dir_dslr = os.path.join(dir_dslr, 'resized_images')
mask_dir_dslr = os.path.join(dir_dslr, 'resized_anon_masks')
sfm_dir_iphone = os.path.join(dir_iphone, 'colmap')
rgb_dir_iphone = os.path.join(dir_iphone, 'rgb')
mask_dir_iphone = os.path.join(dir_iphone, 'rgb_masks')
# load the mesh
with open(ply_path, 'rb') as f:
mesh_kwargs = trimesh.exchange.ply.load_ply(f)
mesh_scene = trimesh.Trimesh(**mesh_kwargs)
# read colmap reconstruction, we will only use the intrinsics and pose here
img_idx_dslr, img_infos_dslr, points3D_dslr, observations_dslr = load_sfm(sfm_dir_dslr, cam_type='dslr')
dslr_paths = {
"in_colmap": sfm_dir_dslr,
"in_rgb": rgb_dir_dslr,
"in_mask": mask_dir_dslr,
}
img_idx_iphone, img_infos_iphone, points3D_iphone, observations_iphone = load_sfm(
sfm_dir_iphone, cam_type='iphone')
iphone_paths = {
"in_colmap": sfm_dir_iphone,
"in_rgb": rgb_dir_iphone,
"in_mask": mask_dir_iphone,
}
mesh = pyrender.Mesh.from_trimesh(mesh_scene, smooth=False)
pyrender_scene = pyrender.Scene()
pyrender_scene.add(mesh)
selection_dslr = [imgname + '.JPG' for imgname in selection if imgname.startswith('DSC')]
selection_iphone = [imgname + '.jpg' for imgname in selection if imgname.startswith('frame_')]
# resize the image to a more manageable size and render depth
for selection_cam, img_idx, img_infos, paths_data in [(selection_dslr, img_idx_dslr, img_infos_dslr, dslr_paths),
(selection_iphone, img_idx_iphone, img_infos_iphone, iphone_paths)]:
rgb_dir = paths_data['in_rgb']
mask_dir = paths_data['in_mask']
for imgname in tqdm(selection_cam, position=1, leave=False):
imgidx = img_idx[imgname]
img_infos_idx = img_infos[imgidx]
rgb = np.array(Image.open(os.path.join(rgb_dir, img_infos_idx['path'])))
mask = np.array(Image.open(os.path.join(mask_dir, img_infos_idx['path'][:-3] + 'png')))
_, _, K, rgb, mask = undistort_images(img_infos_idx['intrinsics'], rgb, mask)
# rescale_image_depthmap assumes opencv intrinsics
intrinsics = geometry.colmap_to_opencv_intrinsics(K)
image, mask, intrinsics = rescale_image_depthmap(
rgb, mask, intrinsics, (target_resolution, target_resolution * 3.0 / 4))
W, H = image.size
intrinsics = geometry.opencv_to_colmap_intrinsics(intrinsics)
# update inpace img_infos_idx
img_infos_idx['intrinsics'] = intrinsics
rgb_outpath = os.path.join(output_dir_scene_rgb, img_infos_idx['path'][:-3] + 'jpg')
image.save(rgb_outpath)
depth_outpath = os.path.join(output_dir_scene_depth, img_infos_idx['path'][:-3] + 'png')
# render depth image
renderer.viewport_width, renderer.viewport_height = W, H
fx, fy, cx, cy = intrinsics[0, 0], intrinsics[1, 1], intrinsics[0, 2], intrinsics[1, 2]
camera = pyrender.camera.IntrinsicsCamera(fx, fy, cx, cy, znear=znear, zfar=zfar)
camera_node = pyrender_scene.add(camera, pose=img_infos_idx['cam_to_world'] @ OPENGL_TO_OPENCV)
depth = renderer.render(pyrender_scene, flags=pyrender.RenderFlags.DEPTH_ONLY)
pyrender_scene.remove_node(camera_node) # dont forget to remove camera
depth = (depth * 1000).astype('uint16')
# invalidate depth from mask before saving
depth_mask = (mask < 255)
depth[depth_mask] = 0
Image.fromarray(depth).save(depth_outpath)
trajectories = []
intrinsics = []
for imgname in selection:
if imgname.startswith('DSC'):
imgidx = img_idx_dslr[imgname + '.JPG']
img_infos_idx = img_infos_dslr[imgidx]
elif imgname.startswith('frame_'):
imgidx = img_idx_iphone[imgname + '.jpg']
img_infos_idx = img_infos_iphone[imgidx]
else:
raise ValueError('invalid image name')
intrinsics.append(img_infos_idx['intrinsics'])
trajectories.append(img_infos_idx['cam_to_world'])
intrinsics = np.stack(intrinsics, axis=0)
trajectories = np.stack(trajectories, axis=0)
# save metadata for this scene
np.savez(scene_metadata_path,
trajectories=trajectories,
intrinsics=intrinsics,
images=selection,
pairs=pairs)
del img_infos
del pyrender_scene
# concat all scene_metadata.npz into a single file
scene_data = {}
for scene_subdir in scenes:
scene_metadata_path = osp.join(output_dir, scene_subdir, 'scene_metadata.npz')
with np.load(scene_metadata_path) as data:
trajectories = data['trajectories']
intrinsics = data['intrinsics']
images = data['images']
pairs = data['pairs']
scene_data[scene_subdir] = {'trajectories': trajectories,
'intrinsics': intrinsics,
'images': images,
'pairs': pairs}
offset = 0
counts = []
scenes = []
sceneids = []
images = []
intrinsics = []
trajectories = []
pairs = []
for scene_idx, (scene_subdir, data) in enumerate(scene_data.items()):
num_imgs = data['images'].shape[0]
img_pairs = data['pairs']
scenes.append(scene_subdir)
sceneids.extend([scene_idx] * num_imgs)
images.append(data['images'])
intrinsics.append(data['intrinsics'])
trajectories.append(data['trajectories'])
# offset pairs
img_pairs[:, 0:2] += offset
pairs.append(img_pairs)
counts.append(offset)
offset += num_imgs
images = np.concatenate(images, axis=0)
intrinsics = np.concatenate(intrinsics, axis=0)
trajectories = np.concatenate(trajectories, axis=0)
pairs = np.concatenate(pairs, axis=0)
np.savez(osp.join(output_dir, 'all_metadata.npz'),
counts=counts,
scenes=scenes,
sceneids=sceneids,
images=images,
intrinsics=intrinsics,
trajectories=trajectories,
pairs=pairs)
print('all done')
if __name__ == '__main__':
parser = get_parser()
args = parser.parse_args()
if args.pyopengl_platform.strip():
os.environ['PYOPENGL_PLATFORM'] = args.pyopengl_platform
process_scenes(args.scannetpp_dir, args.precomputed_pairs, args.output_dir, args.target_resolution)
|