Spaces:
Running
on
L40S
Running
on
L40S
File size: 9,696 Bytes
0514ca2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
#!/usr/bin/env python3
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# Preprocessing code for the WayMo Open dataset
# dataset at https://github.com/waymo-research/waymo-open-dataset
# 1) Accept the license
# 2) download all training/*.tfrecord files from Perception Dataset, version 1.4.2
# 3) put all .tfrecord files in '/path/to/waymo_dir'
# 4) install the waymo_open_dataset package with
# `python3 -m pip install gcsfs waymo-open-dataset-tf-2-12-0==1.6.4`
# 5) execute this script as `python preprocess_waymo.py --waymo_dir /path/to/waymo_dir`
# --------------------------------------------------------
import sys
import os
import os.path as osp
import shutil
import json
from tqdm import tqdm
import PIL.Image
import numpy as np
os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1"
import cv2
import tensorflow.compat.v1 as tf
tf.enable_eager_execution()
import path_to_root # noqa
from dust3r.utils.geometry import geotrf, inv
from dust3r.utils.image import imread_cv2
from dust3r.utils.parallel import parallel_processes as parallel_map
from dust3r.datasets.utils import cropping
from dust3r.viz import show_raw_pointcloud
def get_parser():
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--waymo_dir', required=True)
parser.add_argument('--precomputed_pairs', required=True)
parser.add_argument('--output_dir', default='data/waymo_processed')
parser.add_argument('--workers', type=int, default=1)
return parser
def main(waymo_root, pairs_path, output_dir, workers=1):
extract_frames(waymo_root, output_dir, workers=workers)
make_crops(output_dir, workers=args.workers)
# make sure all pairs are there
with np.load(pairs_path) as data:
scenes = data['scenes']
frames = data['frames']
pairs = data['pairs'] # (array of (scene_id, img1_id, img2_id)
for scene_id, im1_id, im2_id in pairs:
for im_id in (im1_id, im2_id):
path = osp.join(output_dir, scenes[scene_id], frames[im_id] + '.jpg')
assert osp.isfile(path), f'Missing a file at {path=}\nDid you download all .tfrecord files?'
shutil.rmtree(osp.join(output_dir, 'tmp'))
print('Done! all data generated at', output_dir)
def _list_sequences(db_root):
print('>> Looking for sequences in', db_root)
res = sorted(f for f in os.listdir(db_root) if f.endswith('.tfrecord'))
print(f' found {len(res)} sequences')
return res
def extract_frames(db_root, output_dir, workers=8):
sequences = _list_sequences(db_root)
output_dir = osp.join(output_dir, 'tmp')
print('>> outputing result to', output_dir)
args = [(db_root, output_dir, seq) for seq in sequences]
parallel_map(process_one_seq, args, star_args=True, workers=workers)
def process_one_seq(db_root, output_dir, seq):
out_dir = osp.join(output_dir, seq)
os.makedirs(out_dir, exist_ok=True)
calib_path = osp.join(out_dir, 'calib.json')
if osp.isfile(calib_path):
return
try:
with tf.device('/CPU:0'):
calib, frames = extract_frames_one_seq(osp.join(db_root, seq))
except RuntimeError:
print(f'/!\\ Error with sequence {seq} /!\\', file=sys.stderr)
return # nothing is saved
for f, (frame_name, views) in enumerate(tqdm(frames, leave=False)):
for cam_idx, view in views.items():
img = PIL.Image.fromarray(view.pop('img'))
img.save(osp.join(out_dir, f'{f:05d}_{cam_idx}.jpg'))
np.savez(osp.join(out_dir, f'{f:05d}_{cam_idx}.npz'), **view)
with open(calib_path, 'w') as f:
json.dump(calib, f)
def extract_frames_one_seq(filename):
from waymo_open_dataset import dataset_pb2 as open_dataset
from waymo_open_dataset.utils import frame_utils
print('>> Opening', filename)
dataset = tf.data.TFRecordDataset(filename, compression_type='')
calib = None
frames = []
for data in tqdm(dataset, leave=False):
frame = open_dataset.Frame()
frame.ParseFromString(bytearray(data.numpy()))
content = frame_utils.parse_range_image_and_camera_projection(frame)
range_images, camera_projections, _, range_image_top_pose = content
views = {}
frames.append((frame.context.name, views))
# once in a sequence, read camera calibration info
if calib is None:
calib = []
for cam in frame.context.camera_calibrations:
calib.append((cam.name,
dict(width=cam.width,
height=cam.height,
intrinsics=list(cam.intrinsic),
extrinsics=list(cam.extrinsic.transform))))
# convert LIDAR to pointcloud
points, cp_points = frame_utils.convert_range_image_to_point_cloud(
frame,
range_images,
camera_projections,
range_image_top_pose)
# 3d points in vehicle frame.
points_all = np.concatenate(points, axis=0)
cp_points_all = np.concatenate(cp_points, axis=0)
# The distance between lidar points and vehicle frame origin.
cp_points_all_tensor = tf.constant(cp_points_all, dtype=tf.int32)
for i, image in enumerate(frame.images):
# select relevant 3D points for this view
mask = tf.equal(cp_points_all_tensor[..., 0], image.name)
cp_points_msk_tensor = tf.cast(tf.gather_nd(cp_points_all_tensor, tf.where(mask)), dtype=tf.float32)
pose = np.asarray(image.pose.transform).reshape(4, 4)
timestamp = image.pose_timestamp
rgb = tf.image.decode_jpeg(image.image).numpy()
pix = cp_points_msk_tensor[..., 1:3].numpy().round().astype(np.int16)
pts3d = points_all[mask.numpy()]
views[image.name] = dict(img=rgb, pose=pose, pixels=pix, pts3d=pts3d, timestamp=timestamp)
if not 'show full point cloud':
show_raw_pointcloud([v['pts3d'] for v in views.values()], [v['img'] for v in views.values()])
return calib, frames
def make_crops(output_dir, workers=16, **kw):
tmp_dir = osp.join(output_dir, 'tmp')
sequences = _list_sequences(tmp_dir)
args = [(tmp_dir, output_dir, seq) for seq in sequences]
parallel_map(crop_one_seq, args, star_args=True, workers=workers, front_num=0)
def crop_one_seq(input_dir, output_dir, seq, resolution=512):
seq_dir = osp.join(input_dir, seq)
out_dir = osp.join(output_dir, seq)
if osp.isfile(osp.join(out_dir, '00100_1.jpg')):
return
os.makedirs(out_dir, exist_ok=True)
# load calibration file
try:
with open(osp.join(seq_dir, 'calib.json')) as f:
calib = json.load(f)
except IOError:
print(f'/!\\ Error: Missing calib.json in sequence {seq} /!\\', file=sys.stderr)
return
axes_transformation = np.array([
[0, -1, 0, 0],
[0, 0, -1, 0],
[1, 0, 0, 0],
[0, 0, 0, 1]])
cam_K = {}
cam_distortion = {}
cam_res = {}
cam_to_car = {}
for cam_idx, cam_info in calib:
cam_idx = str(cam_idx)
cam_res[cam_idx] = (W, H) = (cam_info['width'], cam_info['height'])
f1, f2, cx, cy, k1, k2, p1, p2, k3 = cam_info['intrinsics']
cam_K[cam_idx] = np.asarray([(f1, 0, cx), (0, f2, cy), (0, 0, 1)])
cam_distortion[cam_idx] = np.asarray([k1, k2, p1, p2, k3])
cam_to_car[cam_idx] = np.asarray(cam_info['extrinsics']).reshape(4, 4) # cam-to-vehicle
frames = sorted(f[:-3] for f in os.listdir(seq_dir) if f.endswith('.jpg'))
# from dust3r.viz import SceneViz
# viz = SceneViz()
for frame in tqdm(frames, leave=False):
cam_idx = frame[-2] # cam index
assert cam_idx in '12345', f'bad {cam_idx=} in {frame=}'
data = np.load(osp.join(seq_dir, frame + 'npz'))
car_to_world = data['pose']
W, H = cam_res[cam_idx]
# load depthmap
pos2d = data['pixels'].round().astype(np.uint16)
x, y = pos2d.T
pts3d = data['pts3d'] # already in the car frame
pts3d = geotrf(axes_transformation @ inv(cam_to_car[cam_idx]), pts3d)
# X=LEFT_RIGHT y=ALTITUDE z=DEPTH
# load image
image = imread_cv2(osp.join(seq_dir, frame + 'jpg'))
# downscale image
output_resolution = (resolution, 1) if W > H else (1, resolution)
image, _, intrinsics2 = cropping.rescale_image_depthmap(image, None, cam_K[cam_idx], output_resolution)
image.save(osp.join(out_dir, frame + 'jpg'), quality=80)
# save as an EXR file? yes it's smaller (and easier to load)
W, H = image.size
depthmap = np.zeros((H, W), dtype=np.float32)
pos2d = geotrf(intrinsics2 @ inv(cam_K[cam_idx]), pos2d).round().astype(np.int16)
x, y = pos2d.T
depthmap[y.clip(min=0, max=H - 1), x.clip(min=0, max=W - 1)] = pts3d[:, 2]
cv2.imwrite(osp.join(out_dir, frame + 'exr'), depthmap)
# save camera parametes
cam2world = car_to_world @ cam_to_car[cam_idx] @ inv(axes_transformation)
np.savez(osp.join(out_dir, frame + 'npz'), intrinsics=intrinsics2,
cam2world=cam2world, distortion=cam_distortion[cam_idx])
# viz.add_rgbd(np.asarray(image), depthmap, intrinsics2, cam2world)
# viz.show()
if __name__ == '__main__':
parser = get_parser()
args = parser.parse_args()
main(args.waymo_dir, args.precomputed_pairs, args.output_dir, workers=args.workers)
|