Spaces:
Running
on
L40S
Running
on
L40S
File size: 15,861 Bytes
8590074 e3e5f9e 286f442 e3e5f9e 8590074 e3e5f9e 9c2f3de e3e5f9e 9c2f3de e3e5f9e cb4a765 9c2f3de e3e5f9e 286f442 e3e5f9e 286f442 e3e5f9e 286f442 e3e5f9e 286f442 e3e5f9e 286f442 e3e5f9e 286f442 e3e5f9e 55b6b2a 8590074 a055fd6 55b6b2a e3e5f9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 |
# Open Source Model Licensed under the Apache License Version 2.0
# and Other Licenses of the Third-Party Components therein:
# The below Model in this distribution may have been modified by THL A29 Limited
# ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited.
# Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved.
# The below software and/or models in this distribution may have been
# modified by THL A29 Limited ("Tencent Modifications").
# All Tencent Modifications are Copyright (C) THL A29 Limited.
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.
# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
import spaces
import os
os.environ['CUDA_HOME'] = '/usr/local/cuda-11*'
import warnings
import argparse
import gradio as gr
from glob import glob
import shutil
import torch
import numpy as np
from PIL import Image
from einops import rearrange
from huggingface_hub import snapshot_download
from infer import seed_everything, save_gif
from infer import Text2Image, Removebg, Image2Views, Views2Mesh, GifRenderer
warnings.simplefilter('ignore', category=UserWarning)
warnings.simplefilter('ignore', category=FutureWarning)
warnings.simplefilter('ignore', category=DeprecationWarning)
parser = argparse.ArgumentParser()
parser.add_argument("--use_lite", default=False, action="store_true")
parser.add_argument("--mv23d_cfg_path", default="./svrm/configs/svrm.yaml", type=str)
parser.add_argument("--mv23d_ckt_path", default="weights/svrm/svrm.safetensors", type=str)
parser.add_argument("--text2image_path", default="weights/hunyuanDiT", type=str)
parser.add_argument("--save_memory", default=True) # , action="store_true")
parser.add_argument("--device", default="cuda:0", type=str)
args = parser.parse_args()
def find_cuda():
# Check if CUDA_HOME or CUDA_PATH environment variables are set
cuda_home = os.environ.get('CUDA_HOME') or os.environ.get('CUDA_PATH')
if cuda_home and os.path.exists(cuda_home):
return cuda_home
# Search for the nvcc executable in the system's PATH
nvcc_path = shutil.which('nvcc')
if nvcc_path:
# Remove the 'bin/nvcc' part to get the CUDA installation path
cuda_path = os.path.dirname(os.path.dirname(nvcc_path))
return cuda_path
return None
cuda_path = find_cuda()
if cuda_path:
print(f"CUDA installation found at: {cuda_path}")
else:
print("CUDA installation not found")
def download_models():
# Create weights directory if it doesn't exist
os.makedirs("weights", exist_ok=True)
os.makedirs("weights/hunyuanDiT", exist_ok=True)
# Download Hunyuan3D-1 model
try:
snapshot_download(
repo_id="tencent/Hunyuan3D-1",
local_dir="./weights",
resume_download=True
)
print("Successfully downloaded Hunyuan3D-1 model")
except Exception as e:
print(f"Error downloading Hunyuan3D-1: {e}")
# Download HunyuanDiT model
try:
snapshot_download(
repo_id="Tencent-Hunyuan/HunyuanDiT-v1.1-Diffusers-Distilled",
local_dir="./weights/hunyuanDiT",
resume_download=True
)
print("Successfully downloaded HunyuanDiT model")
except Exception as e:
print(f"Error downloading HunyuanDiT: {e}")
# Download models before starting the app
download_models()
################################################################
CONST_PORT = 8080
CONST_MAX_QUEUE = 1
CONST_SERVER = '0.0.0.0'
CONST_HEADER = '''
<h2><b>Official 🤗 Gradio Demo</b></h2><h2><a href='https://github.com/tencent/Hunyuan3D-1' target='_blank'><b>Hunyuan3D-1.0: A Unified Framework for Text-to-3D and Image-to-3D
Generationr</b></a></h2>
Code: <a href='https://github.com/tencent/Hunyuan3D-1' target='_blank'>GitHub</a>. Techenical report: <a href='https://arxiv.org/abs/placeholder' target='_blank'>ArXiv</a>.
❗️❗️❗️**Important Notes:**
- By default, our demo can export a .obj mesh with vertex colors or a .glb mesh.
- If you select "texture mapping," it will export a .obj mesh with a texture map or a .glb mesh.
- If you select "render GIF," it will export a GIF image rendering of the .glb file.
- If the result is unsatisfactory, please try a different seed value (Default: 0).
'''
CONST_CITATION = r"""
If HunYuan3D-1 is helpful, please help to ⭐ the <a href='https://github.com/tencent/Hunyuan3D-1' target='_blank'>Github Repo</a>. Thanks! [![GitHub Stars](https://img.shields.io/github/stars/tencent/Hunyuan3D-1?style=social)](https://github.com/tencent/Hunyuan3D-1)
---
📝 **Citation**
If you find our work useful for your research or applications, please cite using this bibtex:
```bibtex
@misc{yang2024tencent,
title={Tencent Hunyuan3D-1.0: A Unified Framework for Text-to-3D and Image-to-3D Generation},
author={Xianghui Yang and Huiwen Shi and Bowen Zhang and Fan Yang and Jiacheng Wang and Hongxu Zhao and Xinhai Liu and Xinzhou Wang and Qingxiang Lin and Jiaao Yu and Lifu Wang and Zhuo Chen and Sicong Liu and Yuhong Liu and Yong Yang and Di Wang and Jie Jiang and Chunchao Guo},
year={2024},
eprint={2411.02293},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
"""
################################################################
def get_example_img_list():
print('Loading example img list ...')
return sorted(glob('./demos/example_*.png'))
def get_example_txt_list():
print('Loading example txt list ...')
txt_list = list()
for line in open('./demos/example_list.txt'):
txt_list.append(line.strip())
return txt_list
example_is = get_example_img_list()
example_ts = get_example_txt_list()
################################################################
worker_xbg = Removebg()
print(f"loading {args.text2image_path}")
worker_t2i = Text2Image(
pretrain = args.text2image_path,
device = args.device,
save_memory = args.save_memory
)
worker_i2v = Image2Views(
use_lite = args.use_lite,
device = args.device,
save_memory = args.save_memory
)
worker_v23 = Views2Mesh(
args.mv23d_cfg_path,
args.mv23d_ckt_path,
use_lite = args.use_lite,
device = args.device,
save_memory = args.save_memory
)
worker_gif = GifRenderer(args.device)
@spaces.GPU
def stage_0_t2i(text, image, seed, step):
os.makedirs('./outputs/app_output', exist_ok=True)
exists = set(int(_) for _ in os.listdir('./outputs/app_output') if not _.startswith("."))
if len(exists) == 30: shutil.rmtree(f"./outputs/app_output/0");cur_id = 0
else: cur_id = min(set(range(30)) - exists)
if os.path.exists(f"./outputs/app_output/{(cur_id + 1) % 30}"):
shutil.rmtree(f"./outputs/app_output/{(cur_id + 1) % 30}")
save_folder = f'./outputs/app_output/{cur_id}'
os.makedirs(save_folder, exist_ok=True)
dst = os.path.join(save_folder, 'img.png')
if not text:
if image is None:
return dst, save_folder
raise gr.Error("Upload image or provide text ...")
image.save(dst)
return dst, save_folder
image = worker_t2i(text, seed, step)
image.save(dst)
dst = worker_xbg(image, save_folder)
return dst, save_folder
@spaces.GPU
def stage_1_xbg(image, save_folder):
if isinstance(image, str):
image = Image.open(image)
dst = save_folder + '/img_nobg.png'
rgba = worker_xbg(image)
rgba.save(dst)
return dst
@spaces.GPU
def stage_2_i2v(image, seed, step, save_folder):
if isinstance(image, str):
image = Image.open(image)
gif_dst = save_folder + '/views.gif'
res_img, pils = worker_i2v(image, seed, step)
save_gif(pils, gif_dst)
views_img, cond_img = res_img[0], res_img[1]
img_array = np.asarray(views_img, dtype=np.uint8)
show_img = rearrange(img_array, '(n h) (m w) c -> (n m) h w c', n=3, m=2)
show_img = show_img[worker_i2v.order, ...]
show_img = rearrange(show_img, '(n m) h w c -> (n h) (m w) c', n=2, m=3)
show_img = Image.fromarray(show_img)
return views_img, cond_img, show_img
@spaces.GPU
def stage_3_v23(
views_pil,
cond_pil,
seed,
save_folder,
target_face_count = 30000,
do_texture_mapping = True,
do_render =True
):
do_texture_mapping = do_texture_mapping or do_render
obj_dst = save_folder + '/mesh_with_colors.obj'
glb_dst = save_folder + '/mesh.glb'
worker_v23(
views_pil,
cond_pil,
seed = seed,
save_folder = save_folder,
target_face_count = target_face_count,
do_texture_mapping = do_texture_mapping
)
return obj_dst, glb_dst
@spaces.GPU
def stage_4_gif(obj_dst, save_folder, do_render_gif=True):
if not do_render_gif: return None
gif_dst = save_folder + '/output.gif'
worker_gif(
save_folder + '/mesh.obj',
gif_dst_path = gif_dst
)
return gif_dst
#===============================================================
with gr.Blocks() as demo:
gr.Markdown(CONST_HEADER)
with gr.Row(variant="panel"):
with gr.Column(scale=2):
with gr.Tab("Text to 3D"):
with gr.Column():
text = gr.TextArea('一只黑白相间的熊猫在白色背景上居中坐着,呈现出卡通风格和可爱氛围。', lines=1, max_lines=10, label='Input text')
with gr.Row():
textgen_seed = gr.Number(value=0, label="T2I seed", precision=0)
textgen_step = gr.Number(value=25, label="T2I step", precision=0)
textgen_SEED = gr.Number(value=0, label="Gen seed", precision=0)
textgen_STEP = gr.Number(value=50, label="Gen step", precision=0)
textgen_max_faces = gr.Number(value=90000, label="max number of faces", precision=0)
with gr.Row():
textgen_do_texture_mapping = gr.Checkbox(label="texture mapping", value=False, interactive=True)
textgen_do_render_gif = gr.Checkbox(label="Render gif", value=False, interactive=True)
textgen_submit = gr.Button("Generate", variant="primary")
with gr.Row():
gr.Examples(examples=example_ts, inputs=[text], label="Txt examples", examples_per_page=10)
with gr.Tab("Image to 3D"):
with gr.Column():
input_image = gr.Image(label="Input image",
width=256, height=256, type="pil",
image_mode="RGBA", sources="upload",
interactive=True)
with gr.Row():
imggen_SEED = gr.Number(value=0, label="Gen seed", precision=0)
imggen_STEP = gr.Number(value=50, label="Gen step", precision=0)
imggen_max_faces = gr.Number(value=90000, label="max number of faces", precision=0)
with gr.Row():
imggen_do_texture_mapping = gr.Checkbox(label="texture mapping", value=False, interactive=True)
imggen_do_render_gif = gr.Checkbox(label="Render gif", value=False, interactive=True)
imggen_submit = gr.Button("Generate", variant="primary")
with gr.Row():
gr.Examples(examples=example_is, inputs=[input_image], label="Img examples", examples_per_page=10)
with gr.Column(scale=3):
with gr.Row():
with gr.Column(scale=2):
rem_bg_image = gr.Image(label="No backgraound image", type="pil",
image_mode="RGBA", interactive=False)
with gr.Column(scale=3):
result_image = gr.Image(label="Multi views", type="pil", interactive=False)
with gr.Row():
result_3dobj = gr.Model3D(
clear_color=[0.0, 0.0, 0.0, 0.0],
label="Output Obj",
show_label=True,
visible=True,
camera_position=[90, 90, None],
interactive=False
)
result_3dglb = gr.Model3D(
clear_color=[0.0, 0.0, 0.0, 0.0],
label="Output Glb",
show_label=True,
visible=True,
camera_position=[90, 90, None],
interactive=False
)
result_gif = gr.Image(label="Rendered GIF", interactive=False)
with gr.Row():
gr.Markdown("""
We recommend download and open Glb using 3D software, such as Blender, MeshLab, etc.
Limited by gradio, Obj file here only be shown as vertex shading, but Glb can be texture shading.
""")
#===============================================================
none = gr.State(None)
save_folder = gr.State()
cond_image = gr.State()
views_image = gr.State()
text_image = gr.State()
textgen_submit.click(
fn=stage_0_t2i, inputs=[text, none, textgen_seed, textgen_step],
outputs=[rem_bg_image, save_folder],
).success(
fn=stage_2_i2v, inputs=[rem_bg_image, textgen_SEED, textgen_STEP, save_folder],
outputs=[views_image, cond_image, result_image],
).success(
fn=stage_3_v23, inputs=[views_image, cond_image, textgen_SEED, save_folder, textgen_max_faces, textgen_do_texture_mapping, textgen_do_render_gif],
outputs=[result_3dobj, result_3dglb],
).success(
fn=stage_4_gif, inputs=[result_3dglb, save_folder, textgen_do_render_gif],
outputs=[result_gif],
).success(lambda: print('Text_to_3D Done ...'))
imggen_submit.click(
fn=stage_0_t2i, inputs=[none, input_image, textgen_seed, textgen_step],
outputs=[text_image, save_folder],
).success(
fn=stage_1_xbg, inputs=[text_image, save_folder],
outputs=[rem_bg_image],
).success(
fn=stage_2_i2v, inputs=[rem_bg_image, imggen_SEED, imggen_STEP, save_folder],
outputs=[views_image, cond_image, result_image],
).success(
fn=stage_3_v23, inputs=[views_image, cond_image, imggen_SEED, save_folder, imggen_max_faces, imggen_do_texture_mapping, imggen_do_render_gif],
outputs=[result_3dobj, result_3dglb],
).success(
fn=stage_4_gif, inputs=[result_3dglb, save_folder, imggen_do_render_gif],
outputs=[result_gif],
).success(lambda: print('Image_to_3D Done ...'))
#===============================================================
gr.Markdown(CONST_CITATION)
demo.queue(max_size=CONST_MAX_QUEUE)
demo.launch()
|