File size: 10,594 Bytes
0514ca2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
# Copyright (C) 2022-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).


# --------------------------------------------------------
# CroCo model during pretraining
# --------------------------------------------------------



import torch
import torch.nn as nn
torch.backends.cuda.matmul.allow_tf32 = True # for gpu >= Ampere and pytorch >= 1.12
from functools import partial

from models.blocks import Block, DecoderBlock, PatchEmbed
from models.pos_embed import get_2d_sincos_pos_embed, RoPE2D 
from models.masking import RandomMask


class CroCoNet(nn.Module):

    def __init__(self,
                 img_size=224,           # input image size
                 patch_size=16,          # patch_size 
                 mask_ratio=0.9,         # ratios of masked tokens 
                 enc_embed_dim=768,      # encoder feature dimension
                 enc_depth=12,           # encoder depth 
                 enc_num_heads=12,       # encoder number of heads in the transformer block 
                 dec_embed_dim=512,      # decoder feature dimension 
                 dec_depth=8,            # decoder depth 
                 dec_num_heads=16,       # decoder number of heads in the transformer block 
                 mlp_ratio=4,
                 norm_layer=partial(nn.LayerNorm, eps=1e-6),
                 norm_im2_in_dec=True,   # whether to apply normalization of the 'memory' = (second image) in the decoder 
                 pos_embed='cosine',     # positional embedding (either cosine or RoPE100)
                ):
                
        super(CroCoNet, self).__init__()
                
        # patch embeddings  (with initialization done as in MAE)
        self._set_patch_embed(img_size, patch_size, enc_embed_dim)

        # mask generations
        self._set_mask_generator(self.patch_embed.num_patches, mask_ratio)

        self.pos_embed = pos_embed
        if pos_embed=='cosine':
            # positional embedding of the encoder 
            enc_pos_embed = get_2d_sincos_pos_embed(enc_embed_dim, int(self.patch_embed.num_patches**.5), n_cls_token=0)
            self.register_buffer('enc_pos_embed', torch.from_numpy(enc_pos_embed).float())
            # positional embedding of the decoder  
            dec_pos_embed = get_2d_sincos_pos_embed(dec_embed_dim, int(self.patch_embed.num_patches**.5), n_cls_token=0)
            self.register_buffer('dec_pos_embed', torch.from_numpy(dec_pos_embed).float())
            # pos embedding in each block
            self.rope = None # nothing for cosine 
        elif pos_embed.startswith('RoPE'): # eg RoPE100 
            self.enc_pos_embed = None # nothing to add in the encoder with RoPE
            self.dec_pos_embed = None # nothing to add in the decoder with RoPE
            if RoPE2D is None: raise ImportError("Cannot find cuRoPE2D, please install it following the README instructions")
            freq = float(pos_embed[len('RoPE'):])
            self.rope = RoPE2D(freq=freq)
        else:
            raise NotImplementedError('Unknown pos_embed '+pos_embed)

        # transformer for the encoder 
        self.enc_depth = enc_depth
        self.enc_embed_dim = enc_embed_dim
        self.enc_blocks = nn.ModuleList([
            Block(enc_embed_dim, enc_num_heads, mlp_ratio, qkv_bias=True, norm_layer=norm_layer, rope=self.rope)
            for i in range(enc_depth)])
        self.enc_norm = norm_layer(enc_embed_dim)
        
        # masked tokens 
        self._set_mask_token(dec_embed_dim)

        # decoder 
        self._set_decoder(enc_embed_dim, dec_embed_dim, dec_num_heads, dec_depth, mlp_ratio, norm_layer, norm_im2_in_dec)
        
        # prediction head 
        self._set_prediction_head(dec_embed_dim, patch_size)
        
        # initializer weights
        self.initialize_weights()           

    def _set_patch_embed(self, img_size=224, patch_size=16, enc_embed_dim=768):
        self.patch_embed = PatchEmbed(img_size, patch_size, 3, enc_embed_dim)

    def _set_mask_generator(self, num_patches, mask_ratio):
        self.mask_generator = RandomMask(num_patches, mask_ratio)
        
    def _set_mask_token(self, dec_embed_dim):
        self.mask_token = nn.Parameter(torch.zeros(1, 1, dec_embed_dim))
        
    def _set_decoder(self, enc_embed_dim, dec_embed_dim, dec_num_heads, dec_depth, mlp_ratio, norm_layer, norm_im2_in_dec):
        self.dec_depth = dec_depth
        self.dec_embed_dim = dec_embed_dim
        # transfer from encoder to decoder 
        self.decoder_embed = nn.Linear(enc_embed_dim, dec_embed_dim, bias=True)
        # transformer for the decoder 
        self.dec_blocks = nn.ModuleList([
            DecoderBlock(dec_embed_dim, dec_num_heads, mlp_ratio=mlp_ratio, qkv_bias=True, norm_layer=norm_layer, norm_mem=norm_im2_in_dec, rope=self.rope)
            for i in range(dec_depth)])
        # final norm layer 
        self.dec_norm = norm_layer(dec_embed_dim)
        
    def _set_prediction_head(self, dec_embed_dim, patch_size):
         self.prediction_head = nn.Linear(dec_embed_dim, patch_size**2 * 3, bias=True)
        
        
    def initialize_weights(self):
        # patch embed 
        self.patch_embed._init_weights()
        # mask tokens
        if self.mask_token is not None: torch.nn.init.normal_(self.mask_token, std=.02)
        # linears and layer norms
        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            # we use xavier_uniform following official JAX ViT:
            torch.nn.init.xavier_uniform_(m.weight)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)
            
    def _encode_image(self, image, do_mask=False, return_all_blocks=False):
        """
        image has B x 3 x img_size x img_size 
        do_mask: whether to perform masking or not
        return_all_blocks: if True, return the features at the end of every block 
                           instead of just the features from the last block (eg for some prediction heads)
        """
        # embed the image into patches  (x has size B x Npatches x C) 
        # and get position if each return patch (pos has size B x Npatches x 2)
        x, pos = self.patch_embed(image)              
        # add positional embedding without cls token  
        if self.enc_pos_embed is not None: 
            x = x + self.enc_pos_embed[None,...]
        # apply masking 
        B,N,C = x.size()
        if do_mask:
            masks = self.mask_generator(x)
            x = x[~masks].view(B, -1, C)
            posvis = pos[~masks].view(B, -1, 2)
        else:
            B,N,C = x.size()
            masks = torch.zeros((B,N), dtype=bool)
            posvis = pos
        # now apply the transformer encoder and normalization        
        if return_all_blocks:
            out = []
            for blk in self.enc_blocks:
                x = blk(x, posvis)
                out.append(x)
            out[-1] = self.enc_norm(out[-1])
            return out, pos, masks
        else:
            for blk in self.enc_blocks:
                x = blk(x, posvis)
            x = self.enc_norm(x)
            return x, pos, masks
 
    def _decoder(self, feat1, pos1, masks1, feat2, pos2, return_all_blocks=False):
        """
        return_all_blocks: if True, return the features at the end of every block 
                           instead of just the features from the last block (eg for some prediction heads)
                           
        masks1 can be None => assume image1 fully visible 
        """
        # encoder to decoder layer 
        visf1 = self.decoder_embed(feat1)
        f2 = self.decoder_embed(feat2)
        # append masked tokens to the sequence
        B,Nenc,C = visf1.size()
        if masks1 is None: # downstreams
            f1_ = visf1
        else: # pretraining 
            Ntotal = masks1.size(1)
            f1_ = self.mask_token.repeat(B, Ntotal, 1).to(dtype=visf1.dtype)
            f1_[~masks1] = visf1.view(B * Nenc, C)
        # add positional embedding
        if self.dec_pos_embed is not None:
            f1_ = f1_ + self.dec_pos_embed
            f2 = f2 + self.dec_pos_embed
        # apply Transformer blocks
        out = f1_
        out2 = f2 
        if return_all_blocks:
            _out, out = out, []
            for blk in self.dec_blocks:
                _out, out2 = blk(_out, out2, pos1, pos2)
                out.append(_out)
            out[-1] = self.dec_norm(out[-1])
        else:
            for blk in self.dec_blocks:
                out, out2 = blk(out, out2, pos1, pos2)
            out = self.dec_norm(out)
        return out

    def patchify(self, imgs):
        """
        imgs: (B, 3, H, W)
        x: (B, L, patch_size**2 *3)
        """
        p = self.patch_embed.patch_size[0]
        assert imgs.shape[2] == imgs.shape[3] and imgs.shape[2] % p == 0

        h = w = imgs.shape[2] // p
        x = imgs.reshape(shape=(imgs.shape[0], 3, h, p, w, p))
        x = torch.einsum('nchpwq->nhwpqc', x)
        x = x.reshape(shape=(imgs.shape[0], h * w, p**2 * 3))
        
        return x

    def unpatchify(self, x, channels=3):
        """
        x: (N, L, patch_size**2 *channels)
        imgs: (N, 3, H, W)
        """
        patch_size = self.patch_embed.patch_size[0]
        h = w = int(x.shape[1]**.5)
        assert h * w == x.shape[1]
        x = x.reshape(shape=(x.shape[0], h, w, patch_size, patch_size, channels))
        x = torch.einsum('nhwpqc->nchpwq', x)
        imgs = x.reshape(shape=(x.shape[0], channels, h * patch_size, h * patch_size))
        return imgs

    def forward(self, img1, img2):
        """
        img1: tensor of size B x 3 x img_size x img_size
        img2: tensor of size B x 3 x img_size x img_size
        
        out will be    B x N x (3*patch_size*patch_size)
        masks are also returned as B x N just in case 
        """
        # encoder of the masked first image 
        feat1, pos1, mask1 = self._encode_image(img1, do_mask=True)
        # encoder of the second image 
        feat2, pos2, _ = self._encode_image(img2, do_mask=False)
        # decoder 
        decfeat = self._decoder(feat1, pos1, mask1, feat2, pos2)
        # prediction head 
        out = self.prediction_head(decfeat)
        # get target
        target = self.patchify(img1)
        return out, mask1, target