Spaces:
Runtime error
Runtime error
File size: 17,831 Bytes
e3e5f9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 |
# Open Source Model Licensed under the Apache License Version 2.0 and Other Licenses of the Third-Party Components therein:
# The below Model in this distribution may have been modified by THL A29 Limited ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited.
# Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved.
# The below software and/or models in this distribution may have been
# modified by THL A29 Limited ("Tencent Modifications").
# All Tencent Modifications are Copyright (C) THL A29 Limited.
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.
# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
import math
import numpy
import torch
import inspect
import warnings
from PIL import Image
from einops import rearrange
import torch.nn.functional as F
from diffusers.utils.torch_utils import randn_tensor
from diffusers.configuration_utils import FrozenDict
from diffusers.image_processor import VaeImageProcessor
from typing import Any, Callable, Dict, List, Optional, Union
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers import DDPMScheduler, EulerAncestralDiscreteScheduler, ImagePipelineOutput
from diffusers.loaders import (
FromSingleFileMixin,
LoraLoaderMixin,
TextualInversionLoaderMixin
)
from transformers import (
CLIPImageProcessor,
CLIPTextModel,
CLIPTokenizer,
CLIPVisionModelWithProjection
)
from diffusers.models.attention_processor import (
Attention,
AttnProcessor,
XFormersAttnProcessor,
AttnProcessor2_0
)
from .utils import to_rgb_image, white_out_background, recenter_img
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> import torch
>>> from here import Hunyuan3d_MVD_Qing_Pipeline
>>> pipe = Hunyuan3d_MVD_Qing_Pipeline.from_pretrained(
... "Tencent-Hunyuan-3D/MVD-Qing", torch_dtype=torch.float16
... )
>>> pipe.to("cuda")
>>> img = Image.open("demo.png")
>>> res_img = pipe(img).images[0]
"""
def unscale_latents(latents): return latents / 0.75 + 0.22
def unscale_image (image ): return image / 0.50 * 0.80
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
return noise_cfg
class ReferenceOnlyAttnProc(torch.nn.Module):
# reference attention
def __init__(self, chained_proc, enabled=False, name=None):
super().__init__()
self.enabled = enabled
self.chained_proc = chained_proc
self.name = name
def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, mode="w", ref_dict=None):
if encoder_hidden_states is None: encoder_hidden_states = hidden_states
if self.enabled:
if mode == 'w':
ref_dict[self.name] = encoder_hidden_states
elif mode == 'r':
encoder_hidden_states = torch.cat([encoder_hidden_states, ref_dict.pop(self.name)], dim=1)
res = self.chained_proc(attn, hidden_states, encoder_hidden_states, attention_mask)
return res
class RefOnlyNoisedUNet(torch.nn.Module):
def __init__(self, unet, train_sched, val_sched):
super().__init__()
self.unet = unet
self.train_sched = train_sched
self.val_sched = val_sched
unet_lora_attn_procs = dict()
for name, _ in unet.attn_processors.items():
unet_lora_attn_procs[name] = ReferenceOnlyAttnProc(AttnProcessor2_0(),
enabled=name.endswith("attn1.processor"),
name=name)
unet.set_attn_processor(unet_lora_attn_procs)
def __getattr__(self, name: str):
try:
return super().__getattr__(name)
except AttributeError:
return getattr(self.unet, name)
def forward(self, sample, timestep, encoder_hidden_states, *args, cross_attention_kwargs, **kwargs):
cond_lat = cross_attention_kwargs['cond_lat']
noise = torch.randn_like(cond_lat)
if self.training:
noisy_cond_lat = self.train_sched.add_noise(cond_lat, noise, timestep)
noisy_cond_lat = self.train_sched.scale_model_input(noisy_cond_lat, timestep)
else:
noisy_cond_lat = self.val_sched.add_noise(cond_lat, noise, timestep.reshape(-1))
noisy_cond_lat = self.val_sched.scale_model_input(noisy_cond_lat, timestep.reshape(-1))
ref_dict = {}
self.unet(noisy_cond_lat,
timestep,
encoder_hidden_states,
*args,
cross_attention_kwargs=dict(mode="w", ref_dict=ref_dict),
**kwargs)
return self.unet(sample,
timestep,
encoder_hidden_states,
*args,
cross_attention_kwargs=dict(mode="r", ref_dict=ref_dict),
**kwargs)
class Hunyuan3d_MVD_Lite_Pipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, FromSingleFileMixin):
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: KarrasDiffusionSchedulers,
vision_encoder: CLIPVisionModelWithProjection,
feature_extractor_clip: CLIPImageProcessor,
feature_extractor_vae: CLIPImageProcessor,
ramping_coefficients: Optional[list] = None,
safety_checker=None,
):
DiffusionPipeline.__init__(self)
self.register_modules(
vae=vae,
unet=unet,
tokenizer=tokenizer,
scheduler=scheduler,
text_encoder=text_encoder,
vision_encoder=vision_encoder,
feature_extractor_vae=feature_extractor_vae,
feature_extractor_clip=feature_extractor_clip)
'''
rewrite the stable diffusion pipeline
vae: vae
unet: unet
tokenizer: tokenizer
scheduler: scheduler
text_encoder: text_encoder
vision_encoder: vision_encoder
feature_extractor_vae: feature_extractor_vae
feature_extractor_clip: feature_extractor_clip
'''
self.register_to_config(ramping_coefficients=ramping_coefficients)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
def prepare_extra_step_kwargs(self, generator, eta):
extra_step_kwargs = {}
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_eta: extra_step_kwargs["eta"] = eta
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator: extra_step_kwargs["generator"] = generator
return extra_step_kwargs
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
latents = latents * self.scheduler.init_noise_sigma
return latents
@torch.no_grad()
def _encode_prompt(
self,
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt=None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
lora_scale: Optional[float] = None,
):
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
self._lora_scale = lora_scale
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
if prompt_embeds is None:
if isinstance(self, TextualInversionLoaderMixin):
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
attention_mask = text_inputs.attention_mask.to(device)
else:
attention_mask = None
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)[0]
if self.text_encoder is not None:
prompt_embeds_dtype = self.text_encoder.dtype
elif self.unet is not None:
prompt_embeds_dtype = self.unet.dtype
else:
prompt_embeds_dtype = prompt_embeds.dtype
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
bs_embed, seq_len, _ = prompt_embeds.shape
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
if do_classifier_free_guidance and negative_prompt_embeds is None:
uncond_tokens: List[str]
if negative_prompt is None: uncond_tokens = [""] * batch_size
elif prompt is not None and type(prompt) is not type(negative_prompt): raise TypeError()
elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt]
elif batch_size != len(negative_prompt): raise ValueError()
else: uncond_tokens = negative_prompt
if isinstance(self, TextualInversionLoaderMixin):
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
max_length = prompt_embeds.shape[1]
uncond_input = self.tokenizer(uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt")
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
attention_mask = uncond_input.attention_mask.to(device)
else:
attention_mask = None
negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=attention_mask)
negative_prompt_embeds = negative_prompt_embeds[0]
if do_classifier_free_guidance:
seq_len = negative_prompt_embeds.shape[1]
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
return prompt_embeds
@torch.no_grad()
def encode_condition_image(self, image: torch.Tensor): return self.vae.encode(image).latent_dist.sample()
@torch.no_grad()
def __call__(self, image=None,
width=640,
height=960,
num_inference_steps=75,
return_dict=True,
generator=None,
**kwargs):
batch_size = 1
num_images_per_prompt = 1
output_type = 'pil'
do_classifier_free_guidance = True
guidance_rescale = 0.
if isinstance(self.unet, UNet2DConditionModel):
self.unet = RefOnlyNoisedUNet(self.unet, None, self.scheduler).eval()
cond_image = recenter_img(image)
cond_image = to_rgb_image(image)
image = cond_image
image_1 = self.feature_extractor_vae(images=image, return_tensors="pt").pixel_values
image_2 = self.feature_extractor_clip(images=image, return_tensors="pt").pixel_values
image_1 = image_1.to(device=self.vae.device, dtype=self.vae.dtype)
image_2 = image_2.to(device=self.vae.device, dtype=self.vae.dtype)
cond_lat = self.encode_condition_image(image_1)
negative_lat = self.encode_condition_image(torch.zeros_like(image_1))
cond_lat = torch.cat([negative_lat, cond_lat])
cross_attention_kwargs = dict(cond_lat=cond_lat)
global_embeds = self.vision_encoder(image_2, output_hidden_states=False).image_embeds.unsqueeze(-2)
encoder_hidden_states = self._encode_prompt('', self.device, num_images_per_prompt, False)
ramp = global_embeds.new_tensor(self.config.ramping_coefficients).unsqueeze(-1)
prompt_embeds = torch.cat([encoder_hidden_states, encoder_hidden_states + global_embeds * ramp])
device = self._execution_device
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
num_channels_latents = self.unet.config.in_channels
latents = self.prepare_latents(batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
None)
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, 0.0)
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
# set adaptive cfg
# the image order is:
# [0, 60,
# 120, 180,
# 240, 300]
# the cfg is set as 3, 2.5, 2, 1.5
tmp_guidance_scale = torch.ones_like(latents)
tmp_guidance_scale[:, :, :40, :40] = 3
tmp_guidance_scale[:, :, :40, 40:] = 2.5
tmp_guidance_scale[:, :, 40:80, :40] = 2
tmp_guidance_scale[:, :, 40:80, 40:] = 1.5
tmp_guidance_scale[:, :, 80:120, :40] = 2
tmp_guidance_scale[:, :, 80:120, 40:] = 2.5
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
noise_pred = self.unet(latent_model_input, t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs=cross_attention_kwargs,
return_dict=False)[0]
adaptive_guidance_scale = (2 + 16 * (t / 1000) ** 5) / 3
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + \
tmp_guidance_scale * adaptive_guidance_scale * \
(noise_pred_text - noise_pred_uncond)
if do_classifier_free_guidance and guidance_rescale > 0.0:
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
if i==len(timesteps)-1 or ((i+1)>num_warmup_steps and (i+1)%self.scheduler.order==0):
progress_bar.update()
latents = unscale_latents(latents)
image = unscale_image(self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0])
image = self.image_processor.postprocess(image, output_type='pil')[0]
image = [image, cond_image]
return ImagePipelineOutput(images=image) if return_dict else (image,)
|