Spaces:
Runtime error
Runtime error
File size: 10,692 Bytes
68cd723 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
import os, sys, time
from typing import List, Optional
from iopath.common.file_io import PathManager
import cv2
import imageio
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
import torch
import torch.nn.functional as F
from torchvision import transforms
import trimesh
from pytorch3d.io import load_objs_as_meshes, load_obj, save_obj
from pytorch3d.ops import interpolate_face_attributes
from pytorch3d.common.datatypes import Device
from pytorch3d.structures import Meshes
from pytorch3d.renderer import (
look_at_view_transform,
FoVPerspectiveCameras,
PointLights,
DirectionalLights,
AmbientLights,
Materials,
RasterizationSettings,
MeshRenderer,
MeshRasterizer,
SoftPhongShader,
TexturesUV,
TexturesVertex,
camera_position_from_spherical_angles,
BlendParams,
)
def erode_mask(src_mask, p=1 / 20.0):
monoMaskImage = cv2.split(src_mask)[0]
br = cv2.boundingRect(monoMaskImage)
k = int(min(br[2], br[3]) * p)
kernel = np.ones((k, k), dtype=np.uint8)
dst_mask = cv2.erode(src_mask, kernel, 1)
return dst_mask
def load_objs_as_meshes_fast(
verts,
faces,
aux,
device: Optional[Device] = None,
load_textures: bool = True,
create_texture_atlas: bool = False,
texture_atlas_size: int = 4,
texture_wrap: Optional[str] = "repeat",
path_manager: Optional[PathManager] = None,
):
tex = None
if create_texture_atlas:
# TexturesAtlas type
tex = TexturesAtlas(atlas=[aux.texture_atlas.to(device)])
else:
# TexturesUV type
tex_maps = aux.texture_images
if tex_maps is not None and len(tex_maps) > 0:
verts_uvs = aux.verts_uvs.to(device) # (V, 2)
faces_uvs = faces.textures_idx.to(device) # (F, 3)
image = list(tex_maps.values())[0].to(device)[None]
tex = TexturesUV(verts_uvs=[verts_uvs], faces_uvs=[faces_uvs], maps=image)
mesh = Meshes( verts=[verts.to(device)], faces=[faces.verts_idx.to(device)], textures=tex)
return mesh
def get_triangle_to_triangle(tri_1, tri_2, img_refined):
'''
args:
tri_1:
tri_2:
'''
r1 = cv2.boundingRect(tri_1)
r2 = cv2.boundingRect(tri_2)
tri_1_cropped = []
tri_2_cropped = []
for i in range(0, 3):
tri_1_cropped.append(((tri_1[i][1] - r1[1]), (tri_1[i][0] - r1[0])))
tri_2_cropped.append(((tri_2[i][1] - r2[1]), (tri_2[i][0] - r2[0])))
trans = cv2.getAffineTransform(np.float32(tri_1_cropped), np.float32(tri_2_cropped))
img_1_cropped = np.float32(img_refined[r1[0]:r1[0] + r1[2], r1[1]:r1[1] + r1[3]])
mask = np.zeros((r2[2], r2[3], 3), dtype=np.float32)
cv2.fillConvexPoly(mask, np.int32(tri_2_cropped), (1.0, 1.0, 1.0), 16, 0)
img_2_cropped = cv2.warpAffine(
img_1_cropped, trans, (r2[3], r2[2]), None,
flags = cv2.INTER_LINEAR,
borderMode = cv2.BORDER_REFLECT_101
)
return mask, img_2_cropped, r2
def back_projection(
obj_file,
init_texture_file,
front_view_file,
dst_dir,
render_resolution=512,
uv_resolution=600,
normalThreshold=0.3, # 0.3
rgb_thresh=820, # 520
views=None,
camera_dist=1.5,
erode_scale=1/100.0,
device="cuda:0"
):
# obj_file: 带有uv的obj
# init_texture_file: 初始展开的uv贴图
# render_resolution 正面视角渲染分辨率
# uv_resolution 贴图分辨率
# thres:normal threshold
os.makedirs(dst_dir, exist_ok=True)
if isinstance(front_view_file, str):
src = np.array(Image.open(front_view_file).convert("RGB"))
elif isinstance(front_view_file, Image.Image):
src = np.array(front_view_file.convert("RGB"))
else:
raise "need file_path or pil"
image_size = (render_resolution, render_resolution)
init_texture = Image.open(init_texture_file)
init_texture = init_texture.convert("RGB")
# init_texture = init_texture.resize((uv_resolution, uv_resolution))
init_texture = np.array(init_texture).astype(np.float32)
print("load obj", obj_file)
verts, faces, aux = load_obj(obj_file, device=device)
mesh = load_objs_as_meshes_fast(verts, faces, aux, device=device)
t0 = time.time()
verts_uvs = aux.verts_uvs
triangle_uvs = verts_uvs[faces.textures_idx]
triangle_uvs = torch.cat([
((1 - triangle_uvs[..., 1]) * uv_resolution).unsqueeze(2),
(triangle_uvs[..., 0] * uv_resolution).unsqueeze(2),
], dim=-1)
triangle_uvs = np.clip(np.round(np.float32(triangle_uvs.cpu())).astype(np.int64), 0, uv_resolution-1)
# import ipdb;ipdb.set_trace()
R0, T0 = look_at_view_transform(camera_dist, views[0][0], views[0][1])
cameras = FoVPerspectiveCameras(device=device, R=R0, T=T0, fov=49.1)
camera_normal = camera_position_from_spherical_angles(1, views[0][0], views[0][1]).to(device)
screen_coords = cameras.transform_points_screen(verts, image_size=image_size)[:, :2]
screen_coords = torch.cat([screen_coords[..., 1, None], screen_coords[..., 0, None]], dim=-1)
triangle_screen_coords = np.round(np.float32(screen_coords[faces.verts_idx].cpu())) # numpy.ndarray (90000, 3, 2)
triangle_screen_coords = np.clip(triangle_screen_coords.astype(np.int64), 0, render_resolution-1)
renderer = MeshRenderer(
rasterizer=MeshRasterizer(
cameras=cameras,
raster_settings= RasterizationSettings(
image_size=image_size,
blur_radius=0.0,
faces_per_pixel=1,
),
),
shader=SoftPhongShader(
device=device,
cameras=cameras,
lights= AmbientLights(device=device),
blend_params=BlendParams(background_color=(1.0, 1.0, 1.0)),
)
)
dst = renderer(mesh)
dst = (dst[..., :3] * 255).squeeze(0).cpu().numpy().astype(np.uint8)
src_mask = np.ones((src.shape[0], src.shape[1]), dst.dtype)
ids = np.where(dst.sum(-1) > 253 * 3)
ids2 = np.where(src.sum(-1) > 250 * 3)
src_mask[ids[0], ids[1]] = 0
src_mask[ids2[0], ids2[1]] = 0
src_mask = (src_mask > 0).astype(np.uint8) * 255
monoMaskImage = cv2.split(src_mask)[0] # reducing the mask to a monochrome
br = cv2.boundingRect(monoMaskImage) # bounding rect (x,y,width,height)
center = (br[0] + br[2] // 2, br[1] + br[3] // 2)
# seamlessClone
try:
images = cv2.seamlessClone(src, dst, src_mask, center, cv2.NORMAL_CLONE) # more qingxi
# images = cv2.seamlessClone(src, dst, src_mask, center, cv2.MIXED_CLONE)
except Exception as err:
print(f"\n\n Warning seamlessClone error: {err} \n\n")
images = src
Image.fromarray(src_mask).save(os.path.join(dst_dir, 'mask.jpeg'))
Image.fromarray(src).save(os.path.join(dst_dir, 'src.jpeg'))
Image.fromarray(dst).save(os.path.join(dst_dir, 'dst.jpeg'))
Image.fromarray(images).save(os.path.join(dst_dir, 'blend.jpeg'))
fragments_scaled = renderer.rasterizer(mesh) # pytorch3d.renderer.mesh.rasterizer.Fragments
faces_covered = fragments_scaled.pix_to_face.unique()[1:] # torch.Tensor torch.Size([30025])
face_normals = mesh.faces_normals_packed().to(device) # torch.Tensor torch.Size([90000, 3]) cuda:0
# faces: pytorch3d.io.obj_io.Faces
# faces.textures_idx: torch.Tensor torch.Size([90000, 3])
# verts_uvs: torch.Tensor torch.Size([49554, 2])
triangle_uvs = verts_uvs[faces.textures_idx]
triangle_uvs = [
((1 - triangle_uvs[..., 1]) * uv_resolution).unsqueeze(2),
(triangle_uvs[..., 0] * uv_resolution).unsqueeze(2),
]
triangle_uvs = torch.cat(triangle_uvs, dim=-1) # numpy.ndarray (90000, 3, 2)
triangle_uvs = np.clip(np.round(np.float32(triangle_uvs.cpu())).astype(np.int64), 0, uv_resolution-1)
t0 = time.time()
SOFT_NORM = True # process big angle-diff face, true:flase? coeff:skip
for k in faces_covered:
# todo: accelerate this for-loop
# if cosine between face-camera is too low, skip current face baking
face_normal = face_normals[k]
cosine = torch.sum((face_normal * camera_normal) ** 2)
if not SOFT_NORM and cosine < normalThreshold: continue
# if coord in screen out of subject, skip current face baking
out_of_subject = src_mask[triangle_screen_coords[k][0][0], triangle_screen_coords[k][0][1]]==0
if out_of_subject: continue
coeff, img_2_cropped, r2 = get_triangle_to_triangle(triangle_screen_coords[k], triangle_uvs[k], images)
# if color difference between new-old, skip current face baking
err = np.abs(init_texture[r2[0]:r2[0]+r2[2], r2[1]:r2[1]+r2[3]]- img_2_cropped)
err = (err * coeff).sum(-1)
# print(err.shape, np.max(err))
if (np.max(err) > rgb_thresh): continue
color_for_debug = None
# if (np.max(err) > 400): color_for_debug = [255, 0, 0]
# if (np.max(err) > 450): color_for_debug = [0, 255, 0]
# if (np.max(err) > 500): color_for_debug = [0, 0, 255]
coeff = coeff.clip(0, 1)
if SOFT_NORM:
coeff *= ((cosine.detach().cpu().numpy() - normalThreshold) / normalThreshold).clip(0,1)
coeff *= (((rgb_thresh - err[...,None]) / rgb_thresh)**0.4).clip(0,1)
if color_for_debug is None:
init_texture[r2[0]:r2[0]+r2[2], r2[1]:r2[1]+r2[3]] = \
init_texture[r2[0]:r2[0]+r2[2], r2[1]:r2[1]+r2[3]] * ((1.0,1.0,1.0)-coeff) + img_2_cropped * coeff
else:
init_texture[r2[0]:r2[0]+r2[2], r2[1]:r2[1]+r2[3]] = color_for_debug
print(f'View baking time: {time.time() - t0}')
bake_dir = os.path.join(dst_dir, 'bake')
os.makedirs(bake_dir, exist_ok=True)
os.system(f'cp {obj_file} {bake_dir}')
textute_img = Image.fromarray(init_texture.astype(np.uint8))
textute_img.save(os.path.join(bake_dir, init_texture_file.split("/")[-1]))
mtl_dir = obj_file.replace('.obj', '.mtl')
if not os.path.exists(mtl_dir): mtl_dir = obj_file.replace("mesh.obj" ,"material.mtl")
if not os.path.exists(mtl_dir): mtl_dir = obj_file.replace("mesh.obj" ,"texture.mtl")
if not os.path.exists(mtl_dir): import ipdb;ipdb.set_trace()
os.system(f'cp {mtl_dir} {bake_dir}')
# convert .obj to .glb file
new_obj_pth = os.path.join(bake_dir, obj_file.split('/')[-1])
new_glb_path = new_obj_pth.replace('.obj', '.glb')
mesh = trimesh.load_mesh(new_obj_pth)
mesh.export(new_glb_path, file_type='glb')
|