Huiwenshi's picture
Upload folder using huggingface_hub
0514ca2 verified
raw
history blame
13.5 kB
## CroCo-Stereo and CroCo-Flow
This README explains how to use CroCo-Stereo and CroCo-Flow as well as how they were trained.
All commands should be launched from the root directory.
### Simple inference example
We provide a simple inference exemple for CroCo-Stereo and CroCo-Flow in the Totebook `croco-stereo-flow-demo.ipynb`.
Before running it, please download the trained models with:
```
bash stereoflow/download_model.sh crocostereo.pth
bash stereoflow/download_model.sh crocoflow.pth
```
### Prepare data for training or evaluation
Put the datasets used for training/evaluation in `./data/stereoflow` (or update the paths at the top of `stereoflow/datasets_stereo.py` and `stereoflow/datasets_flow.py`).
Please find below on the file structure should look for each dataset:
<details>
<summary>FlyingChairs</summary>
```
./data/stereoflow/FlyingChairs/
└───chairs_split.txt
└───data/
└─── ...
```
</details>
<details>
<summary>MPI-Sintel</summary>
```
./data/stereoflow/MPI-Sintel/
└───training/
│ └───clean/
│ └───final/
│ └───flow/
└───test/
└───clean/
└───final/
```
</details>
<details>
<summary>SceneFlow (including FlyingThings)</summary>
```
./data/stereoflow/SceneFlow/
└───Driving/
│ └───disparity/
│ └───frames_cleanpass/
│ └───frames_finalpass/
└───FlyingThings/
│ └───disparity/
│ └───frames_cleanpass/
│ └───frames_finalpass/
│ └───optical_flow/
└───Monkaa/
└───disparity/
└───frames_cleanpass/
└───frames_finalpass/
```
</details>
<details>
<summary>TartanAir</summary>
```
./data/stereoflow/TartanAir/
└───abandonedfactory/
│ └───.../
└───abandonedfactory_night/
│ └───.../
└───.../
```
</details>
<details>
<summary>Booster</summary>
```
./data/stereoflow/booster_gt/
└───train/
└───balanced/
└───Bathroom/
└───Bedroom/
└───...
```
</details>
<details>
<summary>CREStereo</summary>
```
./data/stereoflow/crenet_stereo_trainset/
└───stereo_trainset/
└───crestereo/
└───hole/
└───reflective/
└───shapenet/
└───tree/
```
</details>
<details>
<summary>ETH3D Two-view Low-res</summary>
```
./data/stereoflow/eth3d_lowres/
└───test/
│ └───lakeside_1l/
│ └───...
└───train/
│ └───delivery_area_1l/
│ └───...
└───train_gt/
└───delivery_area_1l/
└───...
```
</details>
<details>
<summary>KITTI 2012</summary>
```
./data/stereoflow/kitti-stereo-2012/
└───testing/
│ └───colored_0/
│ └───colored_1/
└───training/
└───colored_0/
└───colored_1/
└───disp_occ/
└───flow_occ/
```
</details>
<details>
<summary>KITTI 2015</summary>
```
./data/stereoflow/kitti-stereo-2015/
└───testing/
│ └───image_2/
│ └───image_3/
└───training/
└───image_2/
└───image_3/
└───disp_occ_0/
└───flow_occ/
```
</details>
<details>
<summary>Middlebury</summary>
```
./data/stereoflow/middlebury
└───2005/
│ └───train/
│ └───Art/
│ └───...
└───2006/
│ └───Aloe/
│ └───Baby1/
│ └───...
└───2014/
│ └───Adirondack-imperfect/
│ └───Adirondack-perfect/
│ └───...
└───2021/
│ └───data/
│ └───artroom1/
│ └───artroom2/
│ └───...
└───MiddEval3_F/
└───test/
│ └───Australia/
│ └───...
└───train/
└───Adirondack/
└───...
```
</details>
<details>
<summary>Spring</summary>
```
./data/stereoflow/spring/
└───test/
│ └───0003/
│ └───...
└───train/
└───0001/
└───...
```
</details>
### CroCo-Stereo
##### Main model
The main training of CroCo-Stereo was performed on a series of datasets, and it was used as it for Middlebury v3 benchmark.
```
# Download the model
bash stereoflow/download_model.sh crocostereo.pth
# Middlebury v3 submission
python stereoflow/test.py --model stereoflow_models/crocostereo.pth --dataset "MdEval3('all_full')" --save submission --tile_overlap 0.9
# Training command that was used, using checkpoint-last.pth
python -u stereoflow/train.py stereo --criterion "LaplacianLossBounded2()" --dataset "CREStereo('train')+SceneFlow('train_allpass')+30*ETH3DLowRes('train')+50*Md05('train')+50*Md06('train')+50*Md14('train')+50*Md21('train')+50*MdEval3('train_full')+Booster('train_balanced')" --val_dataset "SceneFlow('test1of100_finalpass')+SceneFlow('test1of100_cleanpass')+ETH3DLowRes('subval')+Md05('subval')+Md06('subval')+Md14('subval')+Md21('subval')+MdEval3('subval_full')+Booster('subval_balanced')" --lr 3e-5 --batch_size 6 --epochs 32 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --output_dir xps/crocostereo/main/
# or it can be launched on multiple gpus (while maintaining the effective batch size), e.g. on 3 gpus:
torchrun --nproc_per_node 3 stereoflow/train.py stereo --criterion "LaplacianLossBounded2()" --dataset "CREStereo('train')+SceneFlow('train_allpass')+30*ETH3DLowRes('train')+50*Md05('train')+50*Md06('train')+50*Md14('train')+50*Md21('train')+50*MdEval3('train_full')+Booster('train_balanced')" --val_dataset "SceneFlow('test1of100_finalpass')+SceneFlow('test1of100_cleanpass')+ETH3DLowRes('subval')+Md05('subval')+Md06('subval')+Md14('subval')+Md21('subval')+MdEval3('subval_full')+Booster('subval_balanced')" --lr 3e-5 --batch_size 2 --epochs 32 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --output_dir xps/crocostereo/main/
```
For evaluation of validation set, we also provide the model trained on the `subtrain` subset of the training sets.
```
# Download the model
bash stereoflow/download_model.sh crocostereo_subtrain.pth
# Evaluation on validation sets
python stereoflow/test.py --model stereoflow_models/crocostereo_subtrain.pth --dataset "MdEval3('subval_full')+ETH3DLowRes('subval')+SceneFlow('test_finalpass')+SceneFlow('test_cleanpass')" --save metrics --tile_overlap 0.9
# Training command that was used (same as above but on subtrain, using checkpoint-best.pth), can also be launched on multiple gpus
python -u stereoflow/train.py stereo --criterion "LaplacianLossBounded2()" --dataset "CREStereo('train')+SceneFlow('train_allpass')+30*ETH3DLowRes('subtrain')+50*Md05('subtrain')+50*Md06('subtrain')+50*Md14('subtrain')+50*Md21('subtrain')+50*MdEval3('subtrain_full')+Booster('subtrain_balanced')" --val_dataset "SceneFlow('test1of100_finalpass')+SceneFlow('test1of100_cleanpass')+ETH3DLowRes('subval')+Md05('subval')+Md06('subval')+Md14('subval')+Md21('subval')+MdEval3('subval_full')+Booster('subval_balanced')" --lr 3e-5 --batch_size 6 --epochs 32 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --output_dir xps/crocostereo/main_subtrain/
```
##### Other models
<details>
<summary>Model for ETH3D</summary>
The model used for the submission on ETH3D is trained with the same command but using an unbounded Laplacian loss.
# Download the model
bash stereoflow/download_model.sh crocostereo_eth3d.pth
# ETH3D submission
python stereoflow/test.py --model stereoflow_models/crocostereo_eth3d.pth --dataset "ETH3DLowRes('all')" --save submission --tile_overlap 0.9
# Training command that was used
python -u stereoflow/train.py stereo --criterion "LaplacianLoss()" --tile_conf_mode conf_expbeta3 --dataset "CREStereo('train')+SceneFlow('train_allpass')+30*ETH3DLowRes('train')+50*Md05('train')+50*Md06('train')+50*Md14('train')+50*Md21('train')+50*MdEval3('train_full')+Booster('train_balanced')" --val_dataset "SceneFlow('test1of100_finalpass')+SceneFlow('test1of100_cleanpass')+ETH3DLowRes('subval')+Md05('subval')+Md06('subval')+Md14('subval')+Md21('subval')+MdEval3('subval_full')+Booster('subval_balanced')" --lr 3e-5 --batch_size 6 --epochs 32 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --output_dir xps/crocostereo/main_eth3d/
</details>
<details>
<summary>Main model finetuned on Kitti</summary>
# Download the model
bash stereoflow/download_model.sh crocostereo_finetune_kitti.pth
# Kitti submission
python stereoflow/test.py --model stereoflow_models/crocostereo_finetune_kitti.pth --dataset "Kitti15('test')" --save submission --tile_overlap 0.9
# Training that was used
python -u stereoflow/train.py stereo --crop 352 1216 --criterion "LaplacianLossBounded2()" --dataset "Kitti12('train')+Kitti15('train')" --lr 3e-5 --batch_size 1 --accum_iter 6 --epochs 20 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --start_from stereoflow_models/crocostereo.pth --output_dir xps/crocostereo/finetune_kitti/ --save_every 5
</details>
<details>
<summary>Main model finetuned on Spring</summary>
# Download the model
bash stereoflow/download_model.sh crocostereo_finetune_spring.pth
# Spring submission
python stereoflow/test.py --model stereoflow_models/crocostereo_finetune_spring.pth --dataset "Spring('test')" --save submission --tile_overlap 0.9
# Training command that was used
python -u stereoflow/train.py stereo --criterion "LaplacianLossBounded2()" --dataset "Spring('train')" --lr 3e-5 --batch_size 6 --epochs 8 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --start_from stereoflow_models/crocostereo.pth --output_dir xps/crocostereo/finetune_spring/
</details>
<details>
<summary>Smaller models</summary>
To train CroCo-Stereo with smaller CroCo pretrained models, simply replace the <code>--pretrained</code> argument. To download the smaller CroCo-Stereo models based on CroCo v2 pretraining with ViT-Base encoder and Small encoder, use <code>bash stereoflow/download_model.sh crocostereo_subtrain_vitb_smalldecoder.pth</code>, and for the model with a ViT-Base encoder and a Base decoder, use <code>bash stereoflow/download_model.sh crocostereo_subtrain_vitb_basedecoder.pth</code>.
</details>
### CroCo-Flow
##### Main model
The main training of CroCo-Flow was performed on the FlyingThings, FlyingChairs, MPI-Sintel and TartanAir datasets.
It was used for our submission to the MPI-Sintel benchmark.
```
# Download the model
bash stereoflow/download_model.sh crocoflow.pth
# Evaluation
python stereoflow/test.py --model stereoflow_models/crocoflow.pth --dataset "MPISintel('subval_cleanpass')+MPISintel('subval_finalpass')" --save metrics --tile_overlap 0.9
# Sintel submission
python stereoflow/test.py --model stereoflow_models/crocoflow.pth --dataset "MPISintel('test_allpass')" --save submission --tile_overlap 0.9
# Training command that was used, with checkpoint-best.pth
python -u stereoflow/train.py flow --criterion "LaplacianLossBounded()" --dataset "40*MPISintel('subtrain_cleanpass')+40*MPISintel('subtrain_finalpass')+4*FlyingThings('train_allpass')+4*FlyingChairs('train')+TartanAir('train')" --val_dataset "MPISintel('subval_cleanpass')+MPISintel('subval_finalpass')" --lr 2e-5 --batch_size 8 --epochs 240 --img_per_epoch 30000 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --output_dir xps/crocoflow/main/
```
##### Other models
<details>
<summary>Main model finetuned on Kitti</summary>
# Download the model
bash stereoflow/download_model.sh crocoflow_finetune_kitti.pth
# Kitti submission
python stereoflow/test.py --model stereoflow_models/crocoflow_finetune_kitti.pth --dataset "Kitti15('test')" --save submission --tile_overlap 0.99
# Training that was used, with checkpoint-last.pth
python -u stereoflow/train.py flow --crop 352 1216 --criterion "LaplacianLossBounded()" --dataset "Kitti15('train')+Kitti12('train')" --lr 2e-5 --batch_size 1 --accum_iter 8 --epochs 150 --save_every 5 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --start_from stereoflow_models/crocoflow.pth --output_dir xps/crocoflow/finetune_kitti/
</details>
<details>
<summary>Main model finetuned on Spring</summary>
# Download the model
bash stereoflow/download_model.sh crocoflow_finetune_spring.pth
# Spring submission
python stereoflow/test.py --model stereoflow_models/crocoflow_finetune_spring.pth --dataset "Spring('test')" --save submission --tile_overlap 0.9
# Training command that was used, with checkpoint-last.pth
python -u stereoflow/train.py flow --criterion "LaplacianLossBounded()" --dataset "Spring('train')" --lr 2e-5 --batch_size 8 --epochs 12 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --start_from stereoflow_models/crocoflow.pth --output_dir xps/crocoflow/finetune_spring/
</details>
<details>
<summary>Smaller models</summary>
To train CroCo-Flow with smaller CroCo pretrained models, simply replace the <code>--pretrained</code> argument. To download the smaller CroCo-Flow models based on CroCo v2 pretraining with ViT-Base encoder and Small encoder, use <code>bash stereoflow/download_model.sh crocoflow_vitb_smalldecoder.pth</code>, and for the model with a ViT-Base encoder and a Base decoder, use <code>bash stereoflow/download_model.sh crocoflow_vitb_basedecoder.pth</code>.
</details>