Spaces:
Running
on
L40S
Running
on
L40S
#!/usr/bin/env python3 | |
# Copyright (C) 2024-present Naver Corporation. All rights reserved. | |
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). | |
# | |
# -------------------------------------------------------- | |
# Script to pre-process the WildRGB-D dataset. | |
# Usage: | |
# python3 datasets_preprocess/preprocess_wildrgbd.py --wildrgbd_dir /path/to/wildrgbd | |
# -------------------------------------------------------- | |
import argparse | |
import random | |
import json | |
import os | |
import os.path as osp | |
import PIL.Image | |
import numpy as np | |
import cv2 | |
from tqdm.auto import tqdm | |
import matplotlib.pyplot as plt | |
import path_to_root # noqa | |
import dust3r.datasets.utils.cropping as cropping # noqa | |
from dust3r.utils.image import imread_cv2 | |
def get_parser(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--output_dir", type=str, default="data/wildrgbd_processed") | |
parser.add_argument("--wildrgbd_dir", type=str, required=True) | |
parser.add_argument("--train_num_sequences_per_object", type=int, default=50) | |
parser.add_argument("--test_num_sequences_per_object", type=int, default=10) | |
parser.add_argument("--num_frames", type=int, default=100) | |
parser.add_argument("--seed", type=int, default=42) | |
parser.add_argument("--img_size", type=int, default=512, | |
help=("lower dimension will be >= img_size * 3/4, and max dimension will be >= img_size")) | |
return parser | |
def get_set_list(category_dir, split): | |
listfiles = ["camera_eval_list.json", "nvs_list.json"] | |
sequences_all = {s: {k: set() for k in listfiles} for s in ['train', 'val']} | |
for listfile in listfiles: | |
with open(osp.join(category_dir, listfile)) as f: | |
subset_lists_data = json.load(f) | |
for s in ['train', 'val']: | |
sequences_all[s][listfile].update(subset_lists_data[s]) | |
train_intersection = set.intersection(*list(sequences_all['train'].values())) | |
if split == "train": | |
return train_intersection | |
else: | |
all_seqs = set.union(*list(sequences_all['train'].values()), *list(sequences_all['val'].values())) | |
return all_seqs.difference(train_intersection) | |
def prepare_sequences(category, wildrgbd_dir, output_dir, img_size, split, max_num_sequences_per_object, | |
output_num_frames, seed): | |
random.seed(seed) | |
category_dir = osp.join(wildrgbd_dir, category) | |
category_output_dir = osp.join(output_dir, category) | |
sequences_all = get_set_list(category_dir, split) | |
sequences_all = sorted(sequences_all) | |
sequences_all_tmp = [] | |
for seq_name in sequences_all: | |
scene_dir = osp.join(wildrgbd_dir, category_dir, seq_name) | |
if not os.path.isdir(scene_dir): | |
print(f'{scene_dir} does not exist, skipped') | |
continue | |
sequences_all_tmp.append(seq_name) | |
sequences_all = sequences_all_tmp | |
if len(sequences_all) <= max_num_sequences_per_object: | |
selected_sequences = sequences_all | |
else: | |
selected_sequences = random.sample(sequences_all, max_num_sequences_per_object) | |
selected_sequences_numbers_dict = {} | |
for seq_name in tqdm(selected_sequences, leave=False): | |
scene_dir = osp.join(category_dir, seq_name) | |
scene_output_dir = osp.join(category_output_dir, seq_name) | |
with open(osp.join(scene_dir, 'metadata'), 'r') as f: | |
metadata = json.load(f) | |
K = np.array(metadata["K"]).reshape(3, 3).T | |
fx, fy, cx, cy = K[0, 0], K[1, 1], K[0, 2], K[1, 2] | |
w, h = metadata["w"], metadata["h"] | |
camera_intrinsics = np.array( | |
[[fx, 0, cx], | |
[0, fy, cy], | |
[0, 0, 1]] | |
) | |
camera_to_world_path = os.path.join(scene_dir, 'cam_poses.txt') | |
camera_to_world_content = np.genfromtxt(camera_to_world_path) | |
camera_to_world = camera_to_world_content[:, 1:].reshape(-1, 4, 4) | |
frame_idx = camera_to_world_content[:, 0] | |
num_frames = frame_idx.shape[0] | |
assert num_frames >= output_num_frames | |
assert np.all(frame_idx == np.arange(num_frames)) | |
# selected_sequences_numbers_dict[seq_name] = num_frames | |
selected_frames = np.round(np.linspace(0, num_frames - 1, output_num_frames)).astype(int).tolist() | |
selected_sequences_numbers_dict[seq_name] = selected_frames | |
for frame_id in tqdm(selected_frames): | |
depth_path = os.path.join(scene_dir, 'depth', f'{frame_id:0>5d}.png') | |
masks_path = os.path.join(scene_dir, 'masks', f'{frame_id:0>5d}.png') | |
rgb_path = os.path.join(scene_dir, 'rgb', f'{frame_id:0>5d}.png') | |
input_rgb_image = PIL.Image.open(rgb_path).convert('RGB') | |
input_mask = plt.imread(masks_path) | |
input_depthmap = imread_cv2(depth_path, cv2.IMREAD_UNCHANGED).astype(np.float64) | |
depth_mask = np.stack((input_depthmap, input_mask), axis=-1) | |
H, W = input_depthmap.shape | |
min_margin_x = min(cx, W - cx) | |
min_margin_y = min(cy, H - cy) | |
# the new window will be a rectangle of size (2*min_margin_x, 2*min_margin_y) centered on (cx,cy) | |
l, t = int(cx - min_margin_x), int(cy - min_margin_y) | |
r, b = int(cx + min_margin_x), int(cy + min_margin_y) | |
crop_bbox = (l, t, r, b) | |
input_rgb_image, depth_mask, input_camera_intrinsics = cropping.crop_image_depthmap( | |
input_rgb_image, depth_mask, camera_intrinsics, crop_bbox) | |
# try to set the lower dimension to img_size * 3/4 -> img_size=512 => 384 | |
scale_final = ((img_size * 3 // 4) / min(H, W)) + 1e-8 | |
output_resolution = np.floor(np.array([W, H]) * scale_final).astype(int) | |
if max(output_resolution) < img_size: | |
# let's put the max dimension to img_size | |
scale_final = (img_size / max(H, W)) + 1e-8 | |
output_resolution = np.floor(np.array([W, H]) * scale_final).astype(int) | |
input_rgb_image, depth_mask, input_camera_intrinsics = cropping.rescale_image_depthmap( | |
input_rgb_image, depth_mask, input_camera_intrinsics, output_resolution) | |
input_depthmap = depth_mask[:, :, 0] | |
input_mask = depth_mask[:, :, 1] | |
camera_pose = camera_to_world[frame_id] | |
# save crop images and depth, metadata | |
save_img_path = os.path.join(scene_output_dir, 'rgb', f'{frame_id:0>5d}.jpg') | |
save_depth_path = os.path.join(scene_output_dir, 'depth', f'{frame_id:0>5d}.png') | |
save_mask_path = os.path.join(scene_output_dir, 'masks', f'{frame_id:0>5d}.png') | |
os.makedirs(os.path.split(save_img_path)[0], exist_ok=True) | |
os.makedirs(os.path.split(save_depth_path)[0], exist_ok=True) | |
os.makedirs(os.path.split(save_mask_path)[0], exist_ok=True) | |
input_rgb_image.save(save_img_path) | |
cv2.imwrite(save_depth_path, input_depthmap.astype(np.uint16)) | |
cv2.imwrite(save_mask_path, (input_mask * 255).astype(np.uint8)) | |
save_meta_path = os.path.join(scene_output_dir, 'metadata', f'{frame_id:0>5d}.npz') | |
os.makedirs(os.path.split(save_meta_path)[0], exist_ok=True) | |
np.savez(save_meta_path, camera_intrinsics=input_camera_intrinsics, | |
camera_pose=camera_pose) | |
return selected_sequences_numbers_dict | |
if __name__ == "__main__": | |
parser = get_parser() | |
args = parser.parse_args() | |
assert args.wildrgbd_dir != args.output_dir | |
categories = sorted([ | |
dirname for dirname in os.listdir(args.wildrgbd_dir) | |
if os.path.isdir(os.path.join(args.wildrgbd_dir, dirname, 'scenes')) | |
]) | |
os.makedirs(args.output_dir, exist_ok=True) | |
splits_num_sequences_per_object = [args.train_num_sequences_per_object, args.test_num_sequences_per_object] | |
for split, num_sequences_per_object in zip(['train', 'test'], splits_num_sequences_per_object): | |
selected_sequences_path = os.path.join(args.output_dir, f'selected_seqs_{split}.json') | |
if os.path.isfile(selected_sequences_path): | |
continue | |
all_selected_sequences = {} | |
for category in categories: | |
category_output_dir = osp.join(args.output_dir, category) | |
os.makedirs(category_output_dir, exist_ok=True) | |
category_selected_sequences_path = os.path.join(category_output_dir, f'selected_seqs_{split}.json') | |
if os.path.isfile(category_selected_sequences_path): | |
with open(category_selected_sequences_path, 'r') as fid: | |
category_selected_sequences = json.load(fid) | |
else: | |
print(f"Processing {split} - category = {category}") | |
category_selected_sequences = prepare_sequences( | |
category=category, | |
wildrgbd_dir=args.wildrgbd_dir, | |
output_dir=args.output_dir, | |
img_size=args.img_size, | |
split=split, | |
max_num_sequences_per_object=num_sequences_per_object, | |
output_num_frames=args.num_frames, | |
seed=args.seed + int("category".encode('ascii').hex(), 16), | |
) | |
with open(category_selected_sequences_path, 'w') as file: | |
json.dump(category_selected_sequences, file) | |
all_selected_sequences[category] = category_selected_sequences | |
with open(selected_sequences_path, 'w') as file: | |
json.dump(all_selected_sequences, file) | |